RESUMEN
Hepatocyte nuclear factor 4 alpha (HNF4α) and the pregnane X receptor (PXR) are involved in hepatocyte regeneration. It is not clear whether HNF4α is involved in hepatocyte regeneration through the regulation of PXR. This study aims to explore the regulatory relationship between HNF4a and PXR, and whether it affects hepatocyte regeneration. A mouse PXR gene reporter and an HNF4α overexpression plasmid were constructed and transfected into mouse hepatoma cells (Hepa1-6). Overexpression of HNF4α, detection of the PXR gene reporter fluorescence value, PXR gene, and protein expression analysis were conducted to explore the regulatory relationship between HNF4α and PXR. Apoptosis and cell cycle data were measured to verify whether HNF4α is involved in hepatocyte regeneration through PXR. The luciferase gene reporter assay results indicated when HNF4α was overexpressed, the fluorescence value of the PXR gene reporter was higher than that in the control at 24 h. With increasing HNF4α expression, the PXR gene and protein expression increased, indicating that HNF4α binds to the PXR promoter and upregulates PXR expression. Apoptosis and cell cycle analysis results demonstrated that when the expression of HNF4α increased, the expression of PXR increased, the apoptosis rate decreased, and the proliferation rate increased. Meanwhile, when the upward trend of PXR gene expression was inhibited by ketoconazole, the proliferation rate decreased. By inhibiting HNF4α and creating a partial hepatectomy (PHx), we demonstrated that HNF4α can upregulate PXR to promote liver regeneration in vivo. Therefore, HNF4α is shown to improve hepatocyte regeneration by upregulating PXR, which provides a reference for future research on the combined application of drugs for the treatment of liver injury.
Asunto(s)
Apoptosis , Factor Nuclear 4 del Hepatocito , Hepatocitos , Receptor X de Pregnano , Regulación hacia Arriba , Factor Nuclear 4 del Hepatocito/metabolismo , Factor Nuclear 4 del Hepatocito/genética , Animales , Hepatocitos/metabolismo , Receptor X de Pregnano/metabolismo , Receptor X de Pregnano/genética , Ratones , Regeneración Hepática/genética , Línea Celular Tumoral , Receptores de Esteroides/metabolismo , Receptores de Esteroides/genética , Regiones Promotoras GenéticasRESUMEN
INTRODUCTION: This study aimed to investigate the microbial characteristics of yak uteri collected using intrauterine cotton swabs (CS) during different reproductive stages and the correlation of these microbial characteristics with reproductive status. METHODS: We used a macrogenomic approach to analyze the functional aspects of different microorganisms in samples collected during the pre-estrus, estrus, late estrus, and diestrus stages. RESULTS: The results revealed the presence of 1293 microbial genera and 3401 microbial species in the uteri of yaks at different reproductive stages. The dominant bacterial species varied across the different periods, with Micrococcus and Proteus being dominant during pre-estrus; Pseudomonas, Clostridium, Flavobacterium, Bacillus, and Staphylococcus during estrus; Acinetobacter, Bacillus and Proteus during late estrus; and Pseudomonas, Escherichia coli, and Proteus during diestrus. DISCUSSION: The primary functions of these bacteria are enriched in various metabolic pathways, including carbohydrate and amino acid metabolism, intracellular transport and secretion, post-translational protein modification, and drug resistance. These findings suggest that the microbial diversity in the uterus of yaks plays a crucial role in reproductive regulation and can help prevent reproductive tract-related diseases.
Asunto(s)
Estro , Útero , Femenino , Bovinos , Animales , Útero/metabolismo , ReproducciónRESUMEN
Understanding the microflora inhabiting the reproductive tract is important for a better understanding of female physiology and reproductive health. The endometrial fluid from mice in three reproductive stages (A: Unproductive mice; B: Postovulatory mice; C: Postpartum mice) was extracted for microbial DNA extraction and sequencing. Phenotypic and functional analyses of endometrial microbial enrichment was undertaken using LefSe. The results showed 95 genera and 134 species of microorganisms in the uteri of mice. There were differentially distributed genera, among which Lactobacillus, Enterococcus, and Streptococcus were more abundant in the endometrial fluid of mice in the unproductive group. That of mice in the postovulatory group was colonized with Salmonella enterica and Campylobacter and was mainly enriched in metabolic pathways and steroid biosynthesis. The presence of Chlamydia, Enterococcus, Pseudomonadales, Acinetobacter, and Clostridium in the endometrial fluid of postpartum mice, in addition to the enrichment of the endocrine system and the Apelin and FoxO signaling pathways, resulted in a higher number of pathogenic pathways than in the other two groups. The results showed that the microbial diversity characteristics in the endometrium of mice in different reproductive states differed and that they could be involved in the regulation of animal reproduction through metabolic pathways and steroid biosynthesis, suggesting that reproductive diseases induced by microbial diversity alterations in the regulation of animal reproduction cannot be ignored.
Asunto(s)
Endometrio , Microbiota , Femenino , Animales , Ratones , Endometrio/metabolismo , Reproducción , Ovulación/genética , Microbiota/genética , EsteroidesRESUMEN
Drug-induced liver injury (DILI) is a widespread and harmful disease closely linked to mitochondrial and endoplasmic reticulum stress (ERS). Globally, severe drug-induced hepatitis, cirrhosis, and liver cancer are the primary causes of liver-related morbidity and mortality. A hallmark of DILI is ERS and changes in mitochondrial morphology and function, which increase the production of reactive oxygen species (ROS) in a vicious cycle of mutually reinforcing stress responses. Several pathways are maladapted to maintain homeostasis during DILI. Here, we discuss the processes of liver injury caused by several types of drugs that induce hepatocyte stress, focusing primarily on DILI by ERS and mitochondrial stress. Importantly, both ERS and mitochondrial stress are mediated by the overproduction of ROS, destruction of Ca2+ homeostasis, and unfolded protein response (UPR). Additionally, we review new pathways and potential pharmacological targets for DILI to highlight new possibilities for DILI treatment and mitigation.
Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Estrés del Retículo Endoplásmico , Humanos , Especies Reactivas de Oxígeno/metabolismo , Respuesta de Proteína Desplegada , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , ApoptosisRESUMEN
Photocatalytic fuel cells (PFCs) have proven to be effective for generating electricity and degrading pollutants with a goal to resolve environmental and energy problems. However, the degradation of persistent organic pollutants (POPs), such as perfluorooctanoic acid (PFOA), remains challenging. In the present work, a porous coral-like WO3/W (PCW) photoelectrode with a well-designed energy band structure was used for the photoelectrocatalytic degradation of POPs and the simultaneous generation of electricity. The as-constructed bionic porous coral-like nanostructure greatly improved the light-harvesting capacity of the PCW photoelectrode. A maximum photocurrent density (0.31 mA/cm2) under visible light (λ > 420 nm) irradiation and a high incident photon conversion efficiency (IPCE) value (5.72% at 420 nm) were achieved. Because of the unique porous coral-like structure, the suitable energy band position, and the strong oxidation ability, this PCW photoelectrode-based PFC system exhibited a strong ability for simultaneous photoelectrocatalytic degradation of PFOA and electricity generation under visible-light irradiation, with a power output of 0.0013 mV/cm2 using PFOA as the fuel. This work provides a promising way to construct a reliable PFC using highly toxic POPs to generate electricity.
Asunto(s)
Antozoos , Animales , Electricidad , Electrodos , Luz , PorosidadRESUMEN
Tumor-derived exosomes are considered as a potential marker in liquid biopsy for malignant tumor screening. The development of a sensitive, specific, rapid, and cost-effective detection strategy for tumor-derived exosomes is still a challenge. Herein, a visualized and easy detection method for exosomes was established based on a molybdenum disulfide nanoflower decorated iron organic framework (MoS2-MIL-101(Fe)) hybrid nanozyme-based CD63 aptamer sensor. The CD63 aptamer, which can specifically recognize and capture tumor-derived exosomes, enhanced the peroxidase activity of the hybrid nanozyme and helped to catalyze the 3,3',5,5'-tetramethylbenzidine (TMB)-H2O2 system to generate a stronger colorimetric signal, with its surface modification on the hybrid nanozyme. With the existence of exosomes, CD63 aptamer recognized and adsorbed them on the surface of the nanozyme, which rescued the enhanced peroxidase activity of the aptamer-modified nanozyme, resulting in a deep-to-moderate color change in the TMB-H2O2 system where the change is visible and can be monitored with ultraviolet-visible spectroscopy. In the context of optimal circumstances, the linear range of this exosome detection method is measured to be 1.6 × 104 to 1.6 × 106 particles/µL with a limit of detection as 3.37 × 103 particles/µL. Generally, a simple and accessible approach to exosome detection is constructed, and a nanozyme-based colorimetric aptamer sensor is proposed, which sheds light on novel oncological biomarker measurements in the field of biosensors.
Asunto(s)
Colorimetría , Exosomas , Peróxido de Hidrógeno , Molibdeno , Hierro , Oligonucleótidos , PeroxidasasRESUMEN
The aim of this study was to investigate protein regulation at different time points during the in vitro maturation of yak oocytes. Yak oocytes at GV, MI, and MII stages were collected during in vitro maturation, and differential proteomics sequencing was performed using iTRAQ technology. GO functional classification indicated that the differential proteins were closely associated with biological processes such as "metabolic processes", and molecular events such as "binding" molecular-function-related categories were active. KOG analysis showed that energy-metabolism-related activities were vigorous during oocyte development from the GV phase to MI phase, and genetic material preparation activities were more active when oocytes developed from the MI stage to MII stage. KEGG pathway analysis showed that the PPAR metabolic pathway, Hippo signaling pathway, and ECM-receptor interaction and metabolic pathway were enriched from the GV to the MI stages. The PI3K-Akt, TGF-ß, and phagosome pathways were enriched from the MI stage to the MII stage. These results indicate that transient dynamic changes occurred in the proteome during the maturation of yak oocytes, and the physiological functions mediated by these were also different. The accurate identification of the differential proteins in the three stages of GV, MI, and MII was helpful in further analyzing the molecular regulatory mechanism of yak oocyte maturation.
RESUMEN
Severe air pollution problems have led to a rise in the Chinese public's concern. Risk perception is one of the most important indicators of the public's concern about air pollution. However, there existed few studies exploring the spatial distribution of risk perception. To fill the gap, psychometric paradigm methods was adopted to assess the public's risk perception of air pollution. A nationwide empirical study was conducted from December 2016 to February 2017 and 10,653 completed questionnaires were collected. According to a series of screening strategies, 9744 qualified questionnaires were included as a sample, which covered 31 China provinces (Hong Kong, Macao and Taiwan were not included in this study). We found that 45% of the respondents were dissatisfied with the current air quality, many respondents concerned a lot about air pollution (76%) and worried about the harmful consequences of being exposed to air pollution (86%). There was significant difference in the public's risk perception and attitude toward air pollution among different regions: the respondents in the northeast region, northern coastal region, eastern coastal region and Middle Yellow river region perceived higher air pollution risk and lower satisfaction with air quality than other regions; and the public's trust in the government increased from coastal regions to inland regions. In addition, the hierarchical linear model (HLM) was used to explore the effects of demographic, environmental and economic factors on public risk perception and attitude toward air pollution. Based on this, the characteristics of sensitive populations regarding air pollution were identified. What's more, we found that PM2.5 has a positive influence on perceived risk factor (PR) and can strengthen the positive correlation between PR and satisfaction with air quality (SAQ). Finally, policy implications behind these results were discussed, which can provide references and lay the foundation for policymakers and subsequent researchers.
Asunto(s)
Contaminación del Aire/prevención & control , Actitud , Conservación de los Recursos Naturales , Exposición a Riesgos Ambientales/efectos adversos , Política Ambiental , Percepción , China , Desarrollo Económico/tendencias , Exposición a Riesgos Ambientales/economía , Política Ambiental/economía , Humanos , Modelos Lineales , Psicometría , Factores de Riesgo , Análisis Espacial , Encuestas y CuestionariosRESUMEN
Usher syndrome (USH) is an autosomal recessive disease characterized by deafness and retinitis pigmentosa. In view of the high phenotypic and genetic heterogeneity in USH, performing genetic screening with traditional methods is impractical. In the present study, we carried out targeted next-generation sequencing (NGS) to uncover the underlying gene in an USH family (2 USH patients and 15 unaffected relatives). One hundred and thirty-five genes associated with inherited retinal degeneration were selected for deep exome sequencing. Subsequently, variant analysis, Sanger validation and segregation tests were utilized to identify the disease-causing mutations in this family. All affected individuals had a classic USH type I (USH1) phenotype which included deafness, vestibular dysfunction and retinitis pigmentosa. Targeted NGS and Sanger sequencing validation suggested that USH1 patients carried an unreported splice site mutation, c.5168+1G>A, as a compound heterozygous mutation with c.6070C>T (p.R2024X) in the MYO7A gene. A functional study revealed decreased expression of the MYO7A gene in the individuals carrying heterozygous mutations. In conclusion, targeted next-generation sequencing provided a comprehensive and efficient diagnosis for USH1. This study revealed the genetic defects in the MYO7A gene and expanded the spectrum of clinical phenotypes associated with USH1 mutations.
RESUMEN
Purpose. This study aimed to investigate the association between single nucleotide polymorphisms (SNPs) of JAK-STAT signaling pathway genes and acute anterior uveitis (AAU) with or without ankylosing spondylitis (AS) in the Han Chinese population. Methods. Eleven SNPs of the JAK1, JAK2, STAT1, IRF1, and NOS2 genes were analyzed in 443 AAU patients with AS, 486 AAU patients without AS, and 714 healthy controls. Genotyping was performed by PCR-RFLP assay or TaqMan® probe assay. The Chi-squared (χ2) test and multivariate logistic regression analysis were used to compare the distributions of alleles and genotypes between patients and controls. P values were adjusted using Bonferroni correction. Results. We did not observe significant differences in the genotype and allele frequencies of any SNP between AAU patients with or without AS and healthy controls. Stratification analyses by gender and HLA-B27 status showed a boundary significant association between two SNPs (rs10975003 and rs10758669) in JAK2 and AAU (P = 0.052 and P = 0.053, resp.). Conclusions. Our results indicated that genetic polymorphisms of the JAK-STAT signaling pathway genes may not be associated with AAU in the Han Chinese population.