Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Appl Opt ; 60(36): 11134-11143, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-35201101

RESUMEN

We propose a single diffractive optical element called the composite fractional spiral zone plates to generate superimposed fractional optical vortices. Such an element is composed of two fractional spiral zone plates (FSZPs) through logical AND operation, and the produced beam carries superimposed fractional orbital angular momentum (OAM) states. By controlling the topological charge of the superimposed FSZPs, denoted by l1 and l2, one can flexibly obtain the desired superimposed fractional OAM modes of the generated beam. Especially, a deep-learning model with a densely connected convolutional neural network architecture is utilized to accurately predict the superimposed fractional OAM states of SFOVs. The average recovery rate of the superimposed fractional OAM states based on the training model is over 99%, and the average error is as small as 0.02. This work may pave the way for wide-ranging applications such as smart OAM communication, particle transmission, and even quantum entanglement.

2.
Opt Express ; 25(2): 1339-1349, 2017 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-28158017

RESUMEN

We propose two-dimensional gratings comprised of a large number of identical and similarly oriented hexagonal holes for the high order diffraction suppression. An analytical study of the diffraction property for such gratings, based on both square and triangle arrays, is described. The dependence of the high order diffraction property on the hole shape and size is investigated. Notably, theoretical calculation reveals that the 2nd, 3rd and 4th order diffractions adjacent to the 1st order diffraction can be completely suppressed, and the 5th order diffraction efficiency is as low as 0.01%, which will be submerged in the background noise for most practical applications. The 1st order diffraction intensity efficiency 6.93% can be achieved as the hexagonal holes along y-axis connect with each other. For the case of b=Py/3, the 1st order diffraction intensity efficiency is 3.08%. The experimental results are also presented, confirming the theoretical predictions. Especially, our two-dimensional gratings have the ability to form free-standing structures which are highly desired for the x-ray region. Comparing with the grating of the square array, the grating of the triangle array is easy to be fabricated by silicon planar process due to the large spacing between any two adjacent holes. Our results should be of great interest in a wide spectrum unscrambling from the infrared to the x-ray region.

3.
Adv Sci (Weinh) ; 8(1): 2002886, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33437583

RESUMEN

A nonintrusive far-field optical microscopy resolving structures at the nanometer scale would revolutionize biomedicine and nanotechnology but is not yet available. Here, a new type of microscopy is introduced, which reveals the fine structure of an object through its far-field scattering pattern under illumination with light containing deeply subwavelength singularity features. The object is reconstructed by a neural network trained on a large number of scattering events. In numerical experiments on imaging of a dimer, resolving powers better than λ/200, i.e., two orders of magnitude beyond the conventional "diffraction limit" of λ/2, are demonstrated. It is shown that imaging is tolerant to noise and is achievable with low dynamic range light intensity detectors. Proof-of-principle experimental confirmation of DSTM is provided with a training set of small size, yet sufficient to achieve resolution five-fold better than the diffraction limit. In principle, deep learning reconstruction can be extended to objects of random shape and shall be particularly efficient in microscopy of a priori known shapes, such as those found in routine tasks of machine vision, smart manufacturing, and particle counting for life sciences applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA