Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Purinergic Signal ; 20(1): 35-45, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36918461

RESUMEN

Interest has been focused in recent years on the analgesic effects exerted by adenosine and its receptors, A1, A2A, A2B, and A3 adenosine receptor (AR) subtypes, in different in vivo models of chronic pain. In particular, it was demonstrated that selective A3AR agonists reduced pro-nociceptive N-type Ca2+ channels in dorsal root ganglion (DRG) neurons isolated from rats and, by this mechanism, inhibit post inflammatory visceral hypersensitivity. In the present study, we investigate the effect of a previously reported irreversibly binding A3AR agonist, ICBM, on Ca2+ currents (ICa) in rat DRG neurons. Present data demonstrate that ICBM, an isothiocyanate derivative designed for covalent binding to the receptor, concentration-dependently inhibits ICa. This effect is irreversible, since it persists after drug removal, differently from the prototypical A3AR agonist, Cl-IB-MECA. ICBM pre-exposure inhibits the effect of a subsequent Cl-IB-MECA application. Thus, covalent A3AR agonists such as ICBM may represent an innovative, beneficial, and longer-lasting strategy to achieve efficacious chronic pain control versus commonly used, reversible, A3AR agonists. However, the possible limitations of this drug and other covalent drugs may be, for example, a characteristic adverse effect profile, suggesting that more pre-clinical studies are needed.


Asunto(s)
Dolor Crónico , Ganglios Espinales , Ratas , Animales , Ganglios Espinales/metabolismo , Dolor Crónico/metabolismo , Neuronas/metabolismo , Adenosina/metabolismo , Receptores Purinérgicos P1/metabolismo , Receptor de Adenosina A3/metabolismo , Agonistas del Receptor de Adenosina A3/farmacología
2.
Molecules ; 27(6)2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35335254

RESUMEN

Ligands of the Gi protein-coupled adenosine A3 receptor (A3R) are receiving increasing interest as attractive therapeutic tools for the treatment of a number of pathological conditions of the central and peripheral nervous systems (CNS and PNS, respectively). Their safe pharmacological profiles emerging from clinical trials on different pathologies (e.g., rheumatoid arthritis, psoriasis and fatty liver diseases) confer a realistic translational potential to these compounds, thus encouraging the investigation of highly selective agonists and antagonists of A3R. The present review summarizes information on the effect of latest-generation A3R ligands, not yet available in commerce, obtained by using different in vitro and in vivo models of various PNS- or CNS-related disorders. This review places particular focus on brain ischemia insults and colitis, where the prototypical A3R agonist, Cl-IB-MECA, and antagonist, MRS1523, have been used in research studies as reference compounds to explore the effects of latest-generation ligands on this receptor. The advantages and weaknesses of these compounds in terms of therapeutic potential are discussed.


Asunto(s)
Agonistas del Receptor de Adenosina A3 , Artritis Reumatoide , Agonistas del Receptor de Adenosina A3/farmacología , Agonistas del Receptor de Adenosina A3/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Humanos , Ligandos , Sistema Nervioso Periférico , Receptores Purinérgicos P1
3.
J Neurochem ; 157(4): 1182-1195, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33030215

RESUMEN

The Nucleus Basalis of Meynert (NBM) is the main source of cholinergic neurons in the basal forebrain to be crucially involved in cognitive functions and whose degeneration correlates with cognitive decline in major degenerative pathologies as Alzheimer's and Parkinson's diseases. However, knowledge concerning NBM neurons derived from human brain is very limited to date. We recently characterized a primary culture of proliferating neuroblasts isolated from the human fetal NBM (hfNBM) as immature cholinergic neurons expressing the machinery to synthetize and release acetylcholine. Here we studied in detail electrophysiological features and cholinergic effects in this cell culture by patch-clamp recordings. Our data demonstrate that atropine-blocked muscarinic receptor activation by acetylcholine or carbachol enhanced IK and reduced INa currents by stimulating Gi -coupled M2 or phospholipase C-coupled M3 receptors, respectively. Inhibition of acetylcholine esterase activity by neostigmine unveiled a spontaneous acetylcholine release from hfNBM neuroblasts that might account for an autocrine/paracrine signaling during human brain development. Present data provide the first description of cholinergic effects in human NBM neurons and point to a role of acetylcholine as an autocrine/paracrine modulator of voltage-dependent channels. Our research could be of relevance in understanding the mechanisms of cholinergic system development and functions in the human brain, either in health or disease.


Asunto(s)
Acetilcolina/metabolismo , Potenciales de Acción/fisiología , Prosencéfalo Basal/metabolismo , Neuronas Colinérgicas/metabolismo , Células-Madre Neurales/metabolismo , Núcleo Basal de Meynert/metabolismo , Células Cultivadas , Feto , Humanos , Transducción de Señal/fisiología
4.
J Enzyme Inhib Med Chem ; 36(1): 964-976, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34056989

RESUMEN

Ischaemic stroke is a leading cause of death and disability. One of the major pathogenic mechanisms after ischaemia includes the switch to the glycolytic pathway, leading to tissue acidification. Carbonic anhydrase (CA) contributes to pH regulation. A new generation of CA inhibitors, AN11-740 and AN6-277 and the reference compound acetazolamide (ACTZ) were investigated in two models of brain ischaemia: in rat hippocampal acute slices exposed to severe oxygen, glucose deprivation (OGD) and in an in vivo model of focal cerebral ischaemia induced by permanent occlusion of the middle cerebral artery (pMCAo) in the rat. In vitro, the application of selective CAIs significantly delayed the appearance of anoxic depolarisation induced by OGD. In vivo, sub-chronic systemic treatment with AN11-740 and ACTZ significantly reduced the neurological deficit and decreased the infarct volume after pMCAo. CAIs counteracted neuronal loss, reduced microglia activation and partially counteracted astrocytes degeneration inducing protection from functional and tissue damage.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , Modelos Animales de Enfermedad , Fármacos Neuroprotectores/farmacología , Animales , Isquemia Encefálica/metabolismo , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Relación Dosis-Respuesta a Droga , Masculino , Estructura Molecular , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Ratas , Ratas Wistar , Relación Estructura-Actividad
5.
Int J Mol Sci ; 22(14)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34298893

RESUMEN

Multiple sclerosis (MS) is the most demyelinating disease of the central nervous system (CNS) characterized by neuroinflammation. Oligodendrocyte progenitor cells (OPCs) are cycling cells in the developing and adult CNS that, under demyelinating conditions, migrate to the site of lesions and differentiate into mature oligodendrocytes to remyelinate damaged axons. However, this process fails during disease chronicization due to impaired OPC differentiation. Moreover, OPCs are crucial players in neuro-glial communication as they receive synaptic inputs from neurons and express ion channels and neurotransmitter/neuromodulator receptors that control their maturation. Ion channels are recognized as attractive therapeutic targets, and indeed ligand-gated and voltage-gated channels can both be found among the top five pharmaceutical target groups of FDA-approved agents. Their modulation ameliorates some of the symptoms of MS and improves the outcome of related animal models. However, the exact mechanism of action of ion-channel targeting compounds is often still unclear due to the wide expression of these channels on neurons, glia, and infiltrating immune cells. The present review summarizes recent findings in the field to get further insights into physio-pathophysiological processes and possible therapeutic mechanisms of drug actions.


Asunto(s)
Encéfalo/metabolismo , Canales Iónicos/metabolismo , Vaina de Mielina/metabolismo , Remielinización/fisiología , Animales , Diferenciación Celular/fisiología , Humanos , Neuronas/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo
6.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34360719

RESUMEN

Agonists of the Gi protein-coupled A3 adenosine receptor (A3AR) have shown important pain-relieving properties in preclinical settings of several pain models. Active as a monotherapy against chronic pain, A3AR agonists can also be used in combination with classic opioid analgesics. Their safe pharmacological profile, as shown by clinical trials for other pathologies, i.e., rheumatoid arthritis, psoriasis and fatty liver diseases, confers a realistic translational potential, thus encouraging research studies on the molecular mechanisms underpinning their antinociceptive actions. A number of pathways, involving central and peripheral mechanisms, have been proposed. Recent evidence showed that the prototypical A3AR agonist Cl-IB-MECA and the new, highly selective, A3AR agonist MRS5980 inhibit neuronal (N-type) voltage-dependent Ca2+ currents in dorsal root ganglia, a known pain-related mechanism. Other proposed pathways involve reduced cytokine production, immune cell-mediated responses, as well as reduced microglia and astrocyte activation in the spinal cord. The aim of this review is to summarize up-to-date information on A3AR in the context of pain, including cellular and molecular mechanisms underlying this effect. Based on their safety profile shown in clinical trials for other pathologies, A3AR agonists are proposed as novel, promising non-narcotic agents for pain control.


Asunto(s)
Agonistas del Receptor de Adenosina A3/uso terapéutico , Señalización del Calcio/efectos de los fármacos , Ganglios Espinales , Dolor , Receptor de Adenosina A3/metabolismo , Animales , Astrocitos/metabolismo , Ganglios Espinales/metabolismo , Ganglios Espinales/fisiopatología , Humanos , Microglía/metabolismo , Dolor/tratamiento farmacológico , Dolor/metabolismo , Dolor/fisiopatología
7.
Int J Mol Sci ; 22(9)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068564

RESUMEN

Ischemic stroke is a leading cause of death and disability worldwide. The only pharmacological treatment available to date for cerebral ischemia is tissue plasminogen activator (t-PA) and the search for successful therapeutic strategies still remains a major challenge. The loss of cerebral blood flow leads to reduced oxygen and glucose supply and a subsequent switch to the glycolytic pathway, which leads to tissue acidification. Carbonic anhydrase (CA, EC 4.2.1.1) is the enzyme responsible for converting carbon dioxide into a protons and bicarbonate, thus contributing to pH regulation and metabolism, with many CA isoforms present in the brain. Recently, numerous studies have shed light on several classes of carbonic anhydrase inhibitor (CAI) as possible new pharmacological agents for the management of brain ischemia. In the present review we summarized pharmacological, preclinical and clinical findings regarding the role of CAIs in strokes and we discuss their potential protective mechanisms.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Inhibidores de Anhidrasa Carbónica/uso terapéutico , Anhidrasas Carbónicas/genética , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Bicarbonatos/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Isquemia Encefálica/genética , Isquemia Encefálica/patología , Dióxido de Carbono/metabolismo , Humanos , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/patología , Accidente Cerebrovascular Isquémico/genética , Sulfonamidas/uso terapéutico
8.
Int J Mol Sci ; 21(24)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33353217

RESUMEN

Adenosine is a signaling molecule, which, by activating its receptors, acts as an important player after cerebral ischemia. Here, we review data in the literature describing A2BR-mediated effects in models of cerebral ischemia obtained in vivo by the occlusion of the middle cerebral artery (MCAo) or in vitro by oxygen-glucose deprivation (OGD) in hippocampal slices. Adenosine plays an apparently contradictory role in this receptor subtype depending on whether it is activated on neuro-glial cells or peripheral blood vessels and/or inflammatory cells after ischemia. Indeed, A2BRs participate in the early glutamate-mediated excitotoxicity responsible for neuronal and synaptic loss in the CA1 hippocampus. On the contrary, later after ischemia, the same receptors have a protective role in tissue damage and functional impairments, reducing inflammatory cell infiltration and neuroinflammation by central and/or peripheral mechanisms. Of note, demyelination following brain ischemia, or autoimmune neuroinflammatory reactions, are also profoundly affected by A2BRs since they are expressed by oligodendroglia where their activation inhibits cell maturation and expression of myelin-related proteins. In conclusion, data in the literature indicate the A2BRs as putative therapeutic targets for the still unmet treatment of stroke or demyelinating diseases.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Enfermedades Desmielinizantes/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Receptores de Adenosina A2/química , Animales , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Humanos , Transducción de Señal
9.
Mediators Inflamm ; 2014: 805198, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25165414

RESUMEN

The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A(2A) receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes). Recently, adenosine A(2A) receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by activation of resident immune cells, that is, microglia, and production or activation of inflammation mediators. Proinflammatory cytokines, which upregulate cell adhesion molecules, exert an important role in promoting recruitment of leukocytes that in turn promote expansion of the inflammatory response in ischemic tissue. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. A(2A) receptors present on central cells and on blood cells account for important effects depending on the time-related evolution of the pathological condition. Evidence suggests that A(2A) receptor antagonists provide early protection via centrally mediated control of excessive excitotoxicity, while A(2A) receptor agonists provide protracted protection by controlling massive blood cell infiltration in the hours and days after ischemia. Focus on inflammatory responses provides for adenosine A(2A) receptor agonists a wide therapeutic time-window of hours and even days after stroke.


Asunto(s)
Isquemia Encefálica/inmunología , Isquemia Encefálica/metabolismo , Receptor de Adenosina A2A/metabolismo , Animales , Citocinas/metabolismo , Humanos
10.
Glia ; 61(7): 1155-71, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23640798

RESUMEN

In the developing and mature central nervous system, NG2 expressing cells comprise a population of cycling oligodendrocyte progenitor cells (OPCs) that differentiate into mature, myelinating oligodendrocytes (OLGs). OPCs are also characterized by high motility and respond to injury by migrating into the lesioned area to support remyelination. K(+) currents in OPCs are developmentally regulated during differentiation. However, the mechanisms regulating these currents at different stages of oligodendrocyte lineage are poorly understood. Here we show that, in cultured primary OPCs, the purinergic G-protein coupled receptor GPR17, that has recently emerged as a key player in oligodendrogliogenesis, crucially regulates K(+) currents. Specifically, receptor stimulation by its agonist UDP-glucose enhances delayed rectifier K(+) currents without affecting transient K(+) conductances. This effect was observed in a subpopulation of OPCs and immature pre-OLGs whereas it was absent in mature OLGs, in line with GPR17 expression, that peaks at intermediate phases of oligodendrocyte differentiation and is thereafter downregulated to allow terminal maturation. The effect of UDP-glucose on K(+) currents is concentration-dependent, blocked by the GPR17 antagonists MRS2179 and cangrelor, and sensitive to the K(+) channel blocker tetraethyl-ammonium, which also inhibits oligodendrocyte maturation. We propose that stimulation of K(+) currents is responsible for GPR17-induced oligodendrocyte differentiation. Moreover, we demonstrate, for the first time, that GPR17 activation stimulates OPC migration, suggesting an important role for this receptor after brain injury. Our data indicate that modulation of GPR17 may represent a strategy to potentiate the post-traumatic response of OPCs under demyelinating conditions, such as multiple sclerosis, stroke, and brain trauma.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Uridina Difosfato Glucosa/farmacología , Adenosina Difosfato/análogos & derivados , Adenosina Difosfato/farmacología , Animales , Animales Recién Nacidos , Antígenos/metabolismo , Encéfalo/citología , Calcio/metabolismo , Células Cultivadas , Proteína Ácida Fibrilar de la Glía/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/metabolismo , Proteoglicanos/metabolismo , Antagonistas del Receptor Purinérgico P2Y/farmacología , Ratas , Ratas Wistar , Bloqueadores de los Canales de Sodio/farmacología , Células Madre , Tetraetilamonio/farmacología , Tetrodotoxina/farmacología
11.
Neurobiol Learn Mem ; 106: 246-57, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24076274

RESUMEN

The present study was aimed at establishing a link between the cholinergic system and the pathway of mTOR and its downstream effector p70S6K, likely actors in long term memory encoding. We performed in vivo behavioral experiments using the step down inhibitory avoidance test (IA) in adult Wistar rats to evaluate memory formation under different conditions, and immunohistochemistry on hippocampal slices to evaluate the level and the time-course of mTOR and p70S6K activation. We also examined the effect of RAPA, inhibitor of mTORC1 formation, and of the acetylcholine (ACh) muscarinic receptor antagonist scopolamine (SCOP) or ACh nicotinic receptor antagonist mecamylamine (MECA) on short and long term memory formation and on the functionality of the mTOR pathway. Acquisition test was performed 30 min after i.c.v. injection of RAPA, a time sufficient for the drug to diffuse to CA1 pyramidal neurons, as demonstrated by MALDI-TOF-TOF imaging. Recall test was performed 1 h, 4 h or 24 h after acquisition. To confirm our results we performed in vitro experiments on live hippocampal slices: we evaluated whether stimulation of the cholinergic system with the cholinergic receptor agonist carbachol (CCh) activated the mTOR pathway and whether the administration of the above-mentioned antagonists together with CCh could revert this activation. We found that (1) mTOR and p70S6K activation in the hippocampus were involved in long term memory formation; (2) RAPA administration caused inhibition of mTOR activation at 1 h and 4 h and of p70S6K activation at 4 h, and long term memory impairment at 24 h after acquisition; (3) scopolamine treatment caused short but not long term memory impairment with an early increase of mTOR/p70S6K activation at 1 h followed by stabilization at longer times; (4) mecamylamine plus scopolamine treatment caused short term memory impairment at 1 h and 4 h and reduced the scopolamine-induced increase of mTOR/p70S6K activation at 1 h and 4 h; (5) mecamylamine plus scopolamine treatment did not impair long term memory formation; (6) in vitro treatment with carbachol activated mTOR and p70S6K and this effect was blocked by scopolamine and mecamylamine. Taken together our data reinforce the idea that distinct molecular mechanisms are at the basis of the two different forms of memory and are in accordance with data presented by other groups that there exist molecular mechanisms that underlie short term memory, others that underlie long term memories, but some mechanisms are involved in both.


Asunto(s)
Reacción de Prevención/efectos de los fármacos , Hipocampo/efectos de los fármacos , Memoria a Largo Plazo/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Receptores Muscarínicos/metabolismo , Receptores Nicotínicos/metabolismo , Animales , Reacción de Prevención/fisiología , Hipocampo/metabolismo , Masculino , Mecamilamina/farmacología , Memoria a Largo Plazo/fisiología , Memoria a Corto Plazo/efectos de los fármacos , Memoria a Corto Plazo/fisiología , Antagonistas Muscarínicos/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Antagonistas Nicotínicos/farmacología , Biosíntesis de Proteínas/fisiología , Ratas , Ratas Wistar , Escopolamina/farmacología , Serina-Treonina Quinasas TOR/metabolismo
12.
Biomolecules ; 13(6)2023 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-37371474

RESUMEN

In recent years, the use of multi-target compounds has become an increasingly pursued strategy to treat complex pathologies, including cerebral ischemia. Adenosine and its receptors (A1AR, A2AAR, A2BAR, A3AR) are known to play a crucial role in synaptic transmission either in normoxic or ischemic-like conditions. Previous data demonstrate that the selective antagonism of A2AAR or A2BAR delays anoxic depolarization (AD) appearance, an unequivocal sign of neuronal injury induced by a severe oxygen-glucose deprivation (OGD) insult in the hippocampus. Furthermore, the stimulation of A2AARs or A2BARs by respective selective agonists, CGS21680 and BAY60-6583, increases pre-synaptic neurotransmitter release, as shown by the decrease in paired-pulse facilitation (PPF) at Schaffer collateral-CA1 synapses. In the present research, we investigated the effect/s of the newly synthesized dual A2AAR/A2BAR antagonist, P626, in preventing A2AAR- and/or A2BAR-mediated effects by extracellular recordings of synaptic potentials in the CA1 rat hippocampal slices. We demonstrated that P626 prevented PPF reduction induced by CGS21680 or BAY60-6583 and delayed, in a concentration-dependent manner, AD appearance during a severe OGD. In conclusion, P626 may represent a putative neuroprotective compound for stroke treatment with the possible translational advantage of reducing side effects and bypassing differences in pharmacokinetics due to combined treatment.


Asunto(s)
Adenosina , Hipocampo , Ratas , Animales , Adenosina/farmacología , Isquemia , Transmisión Sináptica , Hipoxia , Oxígeno/farmacología , Plasticidad Neuronal , Glucosa/farmacología
13.
Eur J Neurosci ; 33(12): 2203-15, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21453436

RESUMEN

To investigate the role of purinergic P2 receptors under ischemia, we studied the effect of P2 receptor antagonists on synaptic transmission and mitogen-activated protein kinase (MAPK) activation under oxygen and glucose deprivation (OGD) in rat hippocampal slices. The effect of the P2 antagonists pyridoxalphosphate-6-azophenyl-2',4'-disulfonate (PPADS, unselective, 30 µm), N( 6) -methyl-2'-deoxyadenosine-3',5'-bisphosphate (MRS2179, selective for P2Y(1) receptor, 10 µm), Brilliant Blue G (BBG, selective for P2X(7) receptor, 1 µm), and 5-[[[(3-phenoxyphenyl)methyl][(1S)-1,2,3,4-tetrahydro-1-naphthalenyl]amino]carbonyl]-1,2,4-benzenetricarboxylic acid (A-317491, selective for P2X(3) receptor, 10 µm), and of the newly synthesized P2X(3) receptor antagonists 2-amino-9-(5-iodo-2-isopropyl-4-methoxybenzyl)adenine (PX21, 1 µm) and 2-amino-9-(5-iodo-2-isopropyl-4-methoxybenzyl)-N( 6)-methyladenine (PX24, 1 µm), on the depression of field excitatory postsynaptic potentials (fEPSPs) and anoxic depolarization (AD) elicited by 7 min of OGD were evaluated. All antagonists significantly prevented these effects. The extent of CA1 cell injury was assessed 3 h after the end of 7 min of OGD by propidium iodide staining. Substantial CA1 pyramidal neuronal damage, detected in untreated slices exposed to OGD injury, was significantly prevented by PPADS (30 µm), MRS2179 (10 µm), and BBG (1 µm). Western blot analysis showed that, 10 min after the end of the 7 min of OGD, extracellular signal-regulated kinase (ERK)1/2 MAPK activation was significantly increased. MRS2179, BBG, PPADS and A-317491 significantly counteracted ERK1/2 activation. Hippocampal slices incubated with the ERK1/2 inhibitors 1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene (U0126, 10 µm) and α-[amino[(4-aminophenyl)thio]methylene]-2-(trifluoromethyl) benzeneacetonitrile (SL327, 10 µm) showed significant fEPSP recovery after OGD and delayed AD, supporting the involvement of ERK1/2 in neuronal damage induced by OGD. These results indicate that subtypes of hippocampal P2 purinergic receptors have a harmful effect on neurotransmission in the CA1 hippocampus by participating in AD appearance and activation of ERK1/2.


Asunto(s)
Región CA1 Hipocampal/efectos de los fármacos , Isquemia/tratamiento farmacológico , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Antagonistas del Receptor Purinérgico P2/uso terapéutico , Transmisión Sináptica/efectos de los fármacos , Animales , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/fisiopatología , Hipoxia de la Célula/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Hipoglucemia/tratamiento farmacológico , Hipoglucemia/fisiopatología , Técnicas In Vitro , Isquemia/inducido químicamente , Isquemia/fisiopatología , Masculino , Degeneración Nerviosa/tratamiento farmacológico , Degeneración Nerviosa/fisiopatología , Antagonistas del Receptor Purinérgico P2/farmacología , Ratas , Ratas Wistar
14.
Neural Regen Res ; 16(9): 1686-1692, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33510056

RESUMEN

Oligodendrocyte-formed myelin sheaths allow fast synaptic transmission in the brain and their degeneration leads to demyelinating diseases such as multiple sclerosis. Remyelination requires the differentiation of oligodendrocyte progenitor cells into mature oligodendrocytes but, in chronic neurodegenerative disorders, remyelination fails due to adverse environment. Therefore, a strategy to prompt oligodendrocyte progenitor cell differentiation towards myelinating oligodendrocytes is required. The neuromodulator adenosine, and its receptors (A1, A2A, A2B and A3 receptors: A1R, A2AR, A2BR and A3R), are crucial mediators in remyelination processes. It is known that A1Rs facilitate oligodendrocyte progenitor cell maturation and migration whereas the A3Rs initiates apoptosis in oligodendrocyte progenitor cells. Our group of research contributed to the field by demonstrating that A2AR and A2BR inhibit oligodendrocyte progenitor cell maturation by reducing voltage-dependent K+ currents necessary for cell differentiation. The present review summarizes the possible role of adenosine receptor ligands as potential therapeutic targets in demyelinating pathologies such as multiple sclerosis.

15.
Mol Neurobiol ; 58(6): 2955-2962, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33566318

RESUMEN

Dexpramipexole (DEX) has been described as the first-in-class F1Fo ATP synthase activator able to boost mitochondrial bioenergetics and provide neuroprotection in experimental models of ischemic brain injury. Although DEX failed in a phase III trial in patients with amyotrophic lateral sclerosis, it showed favorable safety and tolerability profiles. Recently, DEX emerged as a Nav1.8 Na+ channel and transient outward K+ (IA) conductance blocker, revealing therefore an unexpected, pleiotypic pharmacodynamic profile. In this study, we performed electrophysiological experiments in vitro aimed to better characterize the impact of DEX on voltage-dependent currents and synaptic transmission in the hippocampus. By means of patch-clamp recordings on isolated hippocampal neurons, we found that DEX increases outward K+ currents evoked by a voltage ramp protocol. This effect is prevented by the non-selective voltage-dependent K+ channel (Kv) blocker TEA and by the selective small-conductance Ca2+-activated K+ (SK) channel blocker apamin. In keeping with this, extracellular field recordings from rat hippocampal slices also demonstrated that the compound inhibits synaptic transmission and CA1 neuron excitability. Overall, these data further our understanding on the pharmacodynamics of DEX and disclose an additional mechanism that could underlie its neuroprotective properties. Also, they identify DEX as a lead to develop new modulators of K+ conductances.


Asunto(s)
Hipocampo/citología , Canales de Potasio/metabolismo , Pramipexol/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Antagonistas de Dopamina/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Ratas Wistar , Receptores Dopaminérgicos/metabolismo , Transmisión Sináptica/efectos de los fármacos
16.
Front Neurosci ; 15: 677988, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34135730

RESUMEN

Oligodendrocyte-formed myelin sheaths allow fast synaptic transmission in the brain. Impairments in the process of myelination, or demyelinating insults, might cause chronic diseases such as multiple sclerosis (MS). Under physiological conditions, remyelination is an ongoing process throughout adult life consisting in the differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes (OLs). During pathological events, this process fails due to unfavorable environment. Adenosine and sphingosine kinase/sphingosine 1-phosphate signaling axes (SphK/S1P) play important roles in remyelination processes. Remarkably, fingolimod (FTY720), a sphingosine analog recently approved for MS treatment, plays important roles in OPC maturation. We recently demonstrated that the selective stimulation of A2 B adenosine receptors (A2 B Rs) inhibit OPC differentiation in vitro and reduce voltage-dependent outward K+ currents (I K ) necessary to OPC maturation, whereas specific SphK1 or SphK2 inhibition exerts the opposite effect. During OPC differentiation A2 B R expression increases, this effect being prevented by SphK1/2 blockade. Furthermore, selective silencing of A2 B R in OPC cultures prompts maturation and, intriguingly, enhances the expression of S1P lyase, the enzyme responsible for irreversible S1P catabolism. Finally, the existence of an interplay between SphK1/S1P pathway and A2 B Rs in OPCs was confirmed since acute stimulation of A2 B Rs activates SphK1 by increasing its phosphorylation. Here the role of A2 B R and SphK/S1P signaling during oligodendrogenesis is reviewed in detail, with the purpose to shed new light on the interaction between A2 B Rs and S1P signaling, as eventual innovative targets for the treatment of demyelinating disorders.

17.
Biomedicines ; 9(1)2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33466557

RESUMEN

In recent years, photobiomodulation (PBM) has been recognized as a physical therapy in wound management. Despite several published research papers, the mechanism underlying photobiomodulation is still not completely understood. The investigation about application of blue light to improve wound healing is a relatively new research area. Tests in selected patients evidenced a stimulation of the healing process in superficial and chronic wounds treated with a blue LED light emitting at 420 nm; a study in animal model pointed out a faster healing process in superficial wound, with an important role of fibroblasts and myofibroblasts. Here, we present a study aiming at evidencing the effects of blue light on the proliferation and metabolism in fibroblasts from healthy skin and keratinocytes. Different light doses (3.43, 6.87, 13.7, 20.6, 30.9 and 41.2 J/cm2) were used to treat the cells, evidencing inhibitory and stimulatory effects following a biphasic dose behavior. Electrophysiology was used to investigate the effects on membrane currents: healthy fibroblasts and keratinocytes showed no significant differences between treated and not treated cells. Raman spectroscopy revealed the mitochondrial Cytochrome C (Cyt C) oxidase dependence on blue light irradiation: a significant decrease in peak intensity of healthy fibroblast was evidenced, while it is less pronounced in keratinocytes. In conclusion, we observed that the blue LED light can be used to modulate metabolism and proliferation of human fibroblasts, and the effects in wound healing are particularly evident when studying the fibroblasts and keratinocytes co-cultures.

18.
Biomedicines ; 8(12)2020 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-33291338

RESUMEN

Keloids are an exuberant response to wound healing, characterized by an exaggerated synthesis of collagen, probably due to the increase of fibroblasts activity and to the reduction of their apoptosis rate: currently no standard treatments or pharmacological therapies are able to prevent keloid recurrence. To reach this goal, in recent years some physical treatments have been proposed, and among them the PhotoBioModulation therapy (PBM). This work analyses the effects of a blue LED light irradiation (410-430 nm, 0.69 W/cm2 power density) on human fibroblasts, isolated from both keloids and perilesional tissues. Different light doses (3.43-6.87-13.7-20.6-30.9 and 41.2 J/cm2) were tested. Biochemical assays and specific staining were used to assess cell metabolism, proliferation and viability. Micro-Raman spectroscopy was used to explore direct effects of the blue LED light on the Cytochrome C (Cyt C) oxidase. We also investigated the effects of the irradiation on ionic membrane currents by patch-clamp recordings. Our results showed that the blue LED light can modulate cell metabolism and proliferation, with a dose-dependent behavior and that these effects persist at least till 48 h after treatment. Furthermore, we demonstrated that the highest fluence value can reduce cell viability 24 h after irradiation in keloid-derived fibroblasts, while the same effect is observed 48 h after treatment in perilesional fibroblasts. Electrophysiological recordings showed that the medium dose (20.6 J/cm2) of blue LED light induces an enhancement of voltage-dependent outward currents elicited by a depolarizing ramp protocol. Overall, these data demonstrate the potentials that PBM shows as an innovative and minimally-invasive approach in the management of hypertrophic scars and keloids, in association with current treatments.

19.
Biochem Pharmacol ; 177: 113956, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32251679

RESUMEN

Oligodendrocytes are the only myelinating cells in the brain and differentiate from their progenitors (OPCs) throughout adult life. However, this process fails in demyelinating pathologies. Adenosine is emerging as an important player in OPC differentiation and we recently demonstrated that adenosine A2A receptors inhibit cell maturation by reducing voltage-dependent K+ currents. No data are available to date about the A2B receptor (A2BR) subtype. The bioactive lipid mediator sphingosine-1-phosphate (S1P) and its receptors (S1P1-5) are also crucial modulators of OPC development. An interaction between this pathway and the A2BR is reported in peripheral cells. We studied the role of A2BRs in modulating K+ currents and cell differentiation in OPC cultures and we investigated a possible interplay with S1P signaling. Our data indicate that the A2BR agonist BAY60-6583 and its new analogue P453 inhibit K+ currents in cultured OPC and the effect was prevented by the A2BR antagonist MRS1706, by K+ channel blockers and was differently modulated by the S1P analogue FTY720-P. An acute (10 min) exposure of OPCs to BAY60-6583 also increased the phosphorylated form of sphingosine kinase 1 (SphK1). A chronic (7 days) treatment with the same agonist decreased OPC differentiation whereas SphK1/2 inhibition exerted the opposite effect. Furthermore, A2BR was overexpressed during OPC differentiation, an effect prevented by the pan SphK1/2 inhibitor VPC69047. Finally, A2BR silenced cells showed increased cell maturation, decreased SphK1 expression and enhanced S1P lyase levels. We conclude that A2BRs inhibit K+ currents and cell differentiation and positively modulate S1P synthesis in cultured OPCs.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Lisofosfolípidos/farmacología , Células Precursoras de Oligodendrocitos/metabolismo , Canales de Potasio/metabolismo , Receptor de Adenosina A2B/metabolismo , Esfingosina/análogos & derivados , Aminopiridinas/farmacología , Animales , Células Cultivadas , Humanos , Células Precursoras de Oligodendrocitos/citología , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Organofosfatos/farmacología , Fosforilación/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Purinas/farmacología , Interferencia de ARN , Ratas Wistar , Receptor de Adenosina A2B/genética , Transducción de Señal/efectos de los fármacos , Esfingosina/farmacología , Receptores de Esfingosina-1-Fosfato/metabolismo
20.
Pain ; 161(4): 831-841, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31815915

RESUMEN

Selective targeting of sodium channel subtypes Nav1.7, Nav1.8, and Nav1.9, preferentially expressed by peripheral nociceptors, represents a unique opportunity to develop analgesics devoid of central side effects. Several compounds that target Nav1.7 and Nav1.8 with different degrees of selectivity have been developed and are currently being tested in clinical trials for multiple pain indications. Among these chemicals, benzothiazole-like compounds emerged as potent sodium channel blockers. We evaluated the effects of dexpramipexole, a benzothiazole-bearing drug with pleiotypic neuroactive properties and a good safety profile in humans, on sodium conductances of dorsal root ganglia neurons, as well as in multiple nociceptive and neuropathic pain models. Dexpramipexole blocks TTX-resistant sodium conductances in cultured rat dorsal root ganglion neurons with an IC50 of 294.4 nM, suggesting selectivity towards Nav1.8. In keeping with this, dexpramipexole does not affect sodium currents in dorsal root ganglion neurons from Nav1.8 null mice and acquires binding pose predicted to overlap that of the Nav1.8 channel-selective blocker A-8034637. The drug provides analgesia when parenterally, orally, or topically applied in inflammatory and visceral mouse pain models, as well as in mice affected by neuropathic pain induced by oxaliplatin, nerve constriction, or diabetes. Pain reduction in mice occurs at doses consistent with those adopted in clinical trials. The present findings confirm the relevance of selective targeting of peripheral Nav1.8 channels to pain therapy. In light of the excellent tolerability of dexpramipexole in humans, our results support its translational potential for treatment of pain.


Asunto(s)
Neuralgia , Analgesia , Animales , Ganglios Espinales , Ratones , Canal de Sodio Activado por Voltaje NAV1.7 , Canal de Sodio Activado por Voltaje NAV1.8/genética , Neuralgia/tratamiento farmacológico , Nocicepción , Pramipexol/uso terapéutico , Ratas , Bloqueadores de los Canales de Sodio/farmacología , Bloqueadores de los Canales de Sodio/uso terapéutico , Canales de Sodio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA