Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Neurobiol Dis ; 174: 105885, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36208866

RESUMEN

Mitochondrial dysfunction happens in both idiopathic (iPD) and LRRK2-related Parkinson's disease (LRRK2-PD). Nonetheless, previous studies suggested that a different type of mitochondrial pathology underlies the neurodegeneration in these two disorders. To further explore this hypothesis, we developed a novel multiplex digital PCR assay that allows the absolute quantification of cell-free mitochondrial DNA (cf-mtDNA) copy number and deletion ratio directly in cerebrospinal fluid (CSF) by simultaneously measuring two opposed regions of the mtDNA circular molecule, one of them in the commonly deleted major arc. The results confirmed that the content of cf-mtDNA in CSF was statistically significantly different between iPD and LRRK2-PD patients. Moreover, we found high cf-mtDNA deletion levels in CSF from patients with iPD, but not LRRK2-PD. The high cf-mtDNA deletion frequency in iPD was validated in an independent cohort. These results indicated that the content and deletion ratio of cf-mtDNA may differentiate iPD from LRRK2-PD, and provides further evidence of the different mitochondrial pathophysiology between these two forms of the disease.


Asunto(s)
Enfermedad de Parkinson , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/líquido cefalorraquídeo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/líquido cefalorraquídeo , ADN Mitocondrial/genética , Mitocondrias/genética , Estudios de Cohortes , Mutación
2.
Int J Mol Sci ; 21(17)2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32878083

RESUMEN

Alzheimer's type dementia (AD) exhibits clinical heterogeneity, as well as differences in disease progression, as a subset of patients with a clinical diagnosis of AD progresses more rapidly (rpAD) than the typical AD of slow progression (spAD). Previous findings indicate that low cerebrospinal fluid (CSF) content of cell-free mitochondrial DNA (cf-mtDNA) precedes clinical signs of AD. We have now investigated the relationship between cf-mtDNA and other biomarkers of AD to determine whether a particular biomarker profile underlies the different rates of AD progression. We measured the content of cf-mtDNA, beta-amyloid peptide 1-42 (Aß), total tau protein (t-tau) and phosphorylated tau (p-tau) in the CSF from a cohort of 95 subjects consisting of 49 controls with a neurologic disorder without dementia, 30 patients with a clinical diagnosis of spAD and 16 patients with rpAD. We found that 37% of controls met at least one AD biomarker criteria, while 53% and 44% of subjects with spAD and rpAD, respectively, did not fulfill the two core AD biomarker criteria: high t-tau and low Aß in CSF. In the whole cohort, patients with spAD, but not with rpAD, showed a statistically significant 44% decrease of cf-mtDNA in CSF compared to control. When the cohort included only subjects selected by Aß and t-tau biomarker criteria, the spAD group showed a larger decrease of cf-mtDNA (69%), whereas in the rpAD group cf-mtDNA levels remained unaltered. In the whole cohort, the CSF levels of cf-mtDNA correlated positively with Aß and negatively with p-tau. Moreover, the ratio between cf-mtDNA and p-tau increased the sensitivity and specificity of spAD diagnosis up to 93% and 94%, respectively, in the biomarker-selected cohort. These results show that the content of cf-mtDNA in CSF correlates with the earliest pathological markers of the disease, Aß and p-tau, but not with the marker of neuronal damage t-tau. Moreover, these findings confirm that low CSF content of cf-mtDNA is a biomarker for the early detection of AD and support the hypothesis that low cf-mtDNA, together with low Aß and high p-tau, constitute a distinctive CSF biomarker profile that differentiates spAD from other neurological disorders.


Asunto(s)
Enfermedad de Alzheimer/patología , Biomarcadores/líquido cefalorraquídeo , ADN Mitocondrial/líquido cefalorraquídeo , ADN Mitocondrial/genética , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/clasificación , Estudios de Casos y Controles , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad
3.
EBioMedicine ; 102: 105065, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38502973

RESUMEN

BACKGROUND: Idiopathic rapid eye movement (REM) sleep behaviour disorder (IRBD) represents the prodromal stage of Lewy body disorders (Parkinson's disease (PD) and dementia with Lewy bodies (DLB)) which are linked to variations in circulating cell-free mitochondrial DNA (cf-mtDNA). Here, we assessed whether altered cf-mtDNA release and integrity are already present in IRBD. METHODS: We used multiplex digital PCR (dPCR) to quantify cf-mtDNA copies and deletion ratio in cerebrospinal fluid (CSF) and serum in a cohort of 71 participants, including 1) 17 patients with IRBD who remained disease-free (non-converters), 2) 34 patients initially diagnosed with IRBD who later developed either PD or DLB (converters), and 3) 20 age-matched controls without IRBD or Parkinsonism. In addition, we investigated whether CD9-positive extracellular vesicles (CD9-EVs) from CSF and serum samples contained cf-mtDNA. FINDINGS: Patients with IRBD, both converters and non-converters, exhibited more cf-mtDNA with deletions in the CSF than controls. This finding was confirmed in CD9-EVs. The high levels of deleted cf-mtDNA in CSF corresponded to a significant decrease in cf-mtDNA copies in CD9-EVs in both IRBD non-converters and converters. Conversely, a significant increase in cf-mtDNA copies was found in serum and CD9-EVs from the serum of patients with IRBD who later converted to a Lewy body disorder. INTERPRETATION: Alterations in cf-mtDNA copy number and deletion ratio known to occur in Lewy body disorders are already present in IRBD and are not a consequence of Lewy body disease conversion. This suggests that mtDNA dysfunction is a primary molecular mechanism of the pathophysiological cascade that precedes the full clinical motor and cognitive manifestation of Lewy body disorders. FUNDING: Funded by Michael J. Fox Foundation research grant MJFF-001111. Funded by MICIU/AEI/10.13039/501100011033 "ERDF A way of making Europe", grants PID2020-115091RB-I00 (RT) and PID2022-143279OB-I00 (ACo). Funded by Instituto de Salud Carlos III and European Union NextGenerationEU/PRTR, grant PMP22/00100 (RT and ACo). Funded by AGAUR/Generalitat de Catalunya, grant SGR00490 (RT and ACo). MP has an FPI fellowship, PRE2018-083297, funded by MICIU/AEI/10.13039/501100011033 "ESF Investing in your future".


Asunto(s)
Enfermedad de Parkinson , Trastornos Parkinsonianos , Trastorno de la Conducta del Sueño REM , Humanos , Trastorno de la Conducta del Sueño REM/diagnóstico , Trastorno de la Conducta del Sueño REM/genética , Enfermedad de Parkinson/genética , Predicción , ADN Mitocondrial/genética
4.
Nat Genet ; 55(10): 1632-1639, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37723262

RESUMEN

Uniparental inheritance of mitochondrial DNA (mtDNA) is an evolutionary trait found in nearly all eukaryotes. In many species, including humans, the sperm mitochondria are introduced to the oocyte during fertilization1,2. The mechanisms hypothesized to prevent paternal mtDNA transmission include ubiquitination of the sperm mitochondria and mitophagy3,4. However, the causative mechanisms of paternal mtDNA elimination have not been defined5,6. We found that mitochondria in human spermatozoa are devoid of intact mtDNA and lack mitochondrial transcription factor A (TFAM)-the major nucleoid protein required to protect, maintain and transcribe mtDNA. During spermatogenesis, sperm cells express an isoform of TFAM, which retains the mitochondrial presequence, ordinarily removed upon mitochondrial import. Phosphorylation of this presequence prevents mitochondrial import and directs TFAM to the spermatozoon nucleus. TFAM relocalization from the mitochondria of spermatogonia to the spermatozoa nucleus directly correlates with the elimination of mtDNA, thereby explaining maternal inheritance in this species.


Asunto(s)
ADN Mitocondrial , Herencia Materna , Humanos , Masculino , ADN Mitocondrial/genética , Herencia Materna/genética , Semen/metabolismo , Mitocondrias/genética , Espermatozoides/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
5.
Nat Commun ; 13(1): 5272, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36071061

RESUMEN

Astrocytes are key elements of brain circuits that are involved in different aspects of the neuronal physiology relevant to brain functions. Although much effort is being made to understand how the biology of astrocytes affects brain circuits, astrocytic network heterogeneity and plasticity is still poorly defined. Here, we have combined structural and functional imaging of astrocyte activity recorded in mice using the Ca2+-modulated photoactivatable ratiometric integrator and specific optostimulation of glutamatergic pathways to map the functional neuron-astrocyte circuitries in the nucleus accumbens (NAc). We showed pathway-specific astrocytic responses induced by selective optostimulation of main inputs from the prefrontal cortex, basolateral amygdala, and ventral hippocampus. Furthermore, co-stimulation of glutamatergic pathways induced non-linear Ca2+-signaling integration, revealing integrative properties of NAc astrocytes. All these results demonstrate the existence of specific neuron-astrocyte circuits in the NAc, providing an insight to the understanding of how the NAc integrates information.


Asunto(s)
Complejo Nuclear Basolateral , Núcleo Accumbens , Animales , Astrocitos/metabolismo , Hipocampo/fisiología , Ratones , Neuronas/metabolismo , Núcleo Accumbens/metabolismo
6.
EBioMedicine ; 48: 554-567, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31631040

RESUMEN

BACKGROUND: Both idiopathic and familial Parkinson's disease are associated with mitochondrial dysfunction. Mitochondria have their own mitochondrial DNA (mtDNA) and previous studies have reported that the release of mtDNA is a biomarker of Parkinson's disease. METHODS: We have now investigated the relationship between mtDNA replication, transcription and release in fibroblasts from patients with idiopathic (iPD) and Leucine-rich repeat kinase 2G2019S -associated Parkinson's disease (LRRK2-PD), using Selfie-digital PCR, a method that allows absolute quantification of mtDNA genomes and transcripts. FINDINGS: In comparison with healthy controls, we found that fibroblasts from patients with iPD or LRRK2-PD had a high amount of mitochondrial 7S DNA along with a low mtDNA replication rate that was associated with a reduction of cf-mtDNA release. Accumulation of 7S DNA in iPD and LRRK2-PD fibroblasts was related with an increase in H-strand mtDNA transcription. INTERPRETATION: These results show that 7S DNA accumulation, low mtDNA replication, high H-strand transcription, and low mtDNA release compose a pattern of mtDNA dysfunction shared by both iPD and LRRK2-PD fibroblasts. Moreover, these results suggest that the deregulation of the genetic switch formed by 7SDNA that alternates between mtDNA replication and transcription is a fundamental pathophysiological mechanism in both idiopathic and monogenic Parkinson's disease.


Asunto(s)
ADN Mitocondrial , Susceptibilidad a Enfermedades , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Enfermedad de Parkinson/etiología , ARN Citoplasmático Pequeño/genética , Partícula de Reconocimiento de Señal/genética , Femenino , Dosificación de Gen , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Masculino , Persona de Mediana Edad , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA