Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biophys J ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39182166

RESUMEN

Desensitization is a prominent feature of nearly all ligand gated ion channels. Acid-sensing ion channels (ASIC) undergo desensitization within hundreds of milliseconds to seconds upon continual extracellular acidification. The ASIC mechanism of desensitization is primarily due to the isomerization or "flipping" of a short linker joining the 11th and 12th beta sheets in the extracellular domain. In the resting and active states this ß11-12 linker adopts an "upward" conformation while in the desensitized conformation the linker assumes a "downward" state. It is unclear if a single linker adopting the "downward" state is sufficient to desensitize the entire channel, if all three are needed or some more complex scheme. To accommodate this "downward" state, specific peptide bonds within the linker adopt either trans-like or cis-like conformations. Since proline-containing peptide bonds undergo cis-trans isomerization very slowly, we hypothesized that introducing proline residues in the linker may slow or even abolish ASIC desensitization, potentially providing a tool valuable research tool. Proline substitutions in the chicken ASIC1 ß11-12 linker (L414P and Y416P) slowed desensitization decays approximately 100 to 1000-fold as measured in excised patches. Both L414P and Y416P shifted the steady state desensitization curves to more acidic pHs while activation curves and ion selectivity were largely unaffected (except for a left shifted activation pH50 of L414P). To investigate the functional stoichiometry of desensitization in the trimeric ASIC, we created families of L414P and Y416P concatemers with zero, one, two or three proline substitutions in all possible configurations. Introducing one or two L414P or Y416P substitutions only slightly attenuated desensitization, suggesting that conformational changes in the single remaining faster wild type subunits were sufficient to desensitize the channel. These data highlight the unusual cis-trans isomerization mechanism of ASIC desensitization and support a model where ASIC desensitization requires only a single subunit.

2.
Biochem Biophys Res Commun ; 664: 20-26, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37130457

RESUMEN

The cellular implications of the interaction between Pannexin-1 (Panx1) channel and P2X7 receptor (P2X7R) have not been fully elucidated. Evidence suggests that ATP, released through Panx1, activates P2X7R, which in turn promotes further activation of Panx1. In a previous study, we reported that the C-terminus of Panx1 (Panx1-CT) attenuates P2X7R-mediated Ca2+ influx and cell death. One of the distinctive features of P2X7R is the gradual increase in current with repetitive stimulation. In the current study, we report an effect of Panx1-CT (amino acid residues 350 to 426) on P2X7R current, which differs from the effect of full-length Panx1. Panx1-CT inhibited P2X7R current, which persisted in all consecutive agonist applications. However, full-length Panx1 reduced P2X7R current at initial stimulations, followed by gradual augmentation. When P2X7R was activated for an extended period, cells expressing Panx1-CT exhibited less mitochondrial depolarization, reactive oxygen species (ROS) generation, Caspase 3 activation and cell death, whereas cells overexpressing full-length Panx1 showed the opposite effect. Taken together, these findings suggest that Panx1 can either attenuate or augment P2X7R-mediated cellular processes depending on the degree of P2X7R activation.


Asunto(s)
Conexinas , Receptores Purinérgicos P2X7 , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Conexinas/genética , Conexinas/metabolismo , Transducción de Señal , Muerte Celular , Adenosina Trifosfato/metabolismo
3.
Biochem Biophys Res Commun ; 548: 143-147, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33640607

RESUMEN

Pannexin 1 (Panx1) has been implicated in a plethora of physiological and pathophysiological processes. It is one of the major ATP release channels in many cell types. Extracellular ATP, activates purinergic P2X and P2Y receptors, triggering several signaling cascades. A disease-associated mutation, Arg-217-His (R217H) in the 3rd transmembrane domain of Panx1 attenuates channel functions through an unknown mechanism. Since carboxyl terminus (CT) gates the channel, we hypothesized that R217 interacts with the CT, and this interaction is required for optimum channel activities. R217H mutation though reduced the currents in the full-length channel, did not affect CT-truncated Panx1-Δ386. Also, compared to the wild-type, Panx1-R217H expressing cells showed lesser cell death when activated through P2X7 receptor. However, cell death in Panx1-R217H-Δ386 and Panx1-Δ386 expressing cells were similar. The mutation is ineffective unless the channel has an intact CT. Based on our results we propose that R217H mutation perturbs the conformational flexibility of CT, leading to channel dysfunction.


Asunto(s)
Conexinas/química , Conexinas/genética , Mutación/genética , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Secuencia de Aminoácidos , Muerte Celular , Conexinas/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo
4.
bioRxiv ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38798386

RESUMEN

Desensitization is a prominent feature of nearly all ligand gated ion channels. Acid-sensing ion channels (ASIC) undergo desensitization within hundreds of milliseconds to seconds upon continual extracellular acidification. The ASIC mechanism of desensitization is primarily due to the isomerization or "flipping" of a short linker joining the 11th and 12th beta sheets in the extracellular domain. In the resting and active states this ß11-12 linker adopts an "upward" conformation while in the desensitized conformation the linker assumes a "downward" state. To accommodate this "downward" state, specific peptide bonds within the linker adopt either trans-like or cis-like conformations. Since proline-containing peptide bonds undergo cis-trans isomerization very slowly, we hypothesized that introducing proline residues in the linker may slow or even abolish ASIC desensitization, potentially providing a valuable research tools. Proline substitutions in the chicken ASIC1 ß11-12 linker (L414P and Y416P) slowed desensitization decays approximately 100 to 1000-fold as measured in excised patches. Both L414P and Y416P shifted the steady state desensitization curves to more acidic pHs while activation curves and ion selectivity of these slow-desensitizing currents were largely unaffected. To investigate the functional stoichiometry of desensitization in the trimeric ASIC, we created families of L414P and Y416P concatemers with zero, one, two or three proline substitutions in all possible configurations. Introducing one or two L414P or Y416P mutations only slightly attenuated desensitization, suggesting that conformational changes in the remaining faster wild type subunits were sufficient to desensitize the channel. These data highlight the unusual cis-trans isomerization mechanism of ASIC desensitization and support a model where a single subunit is sufficient to desensitize the entire channel.

5.
Cell Calcium ; 99: 102458, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34479067

RESUMEN

Extracellular ATP works as an autocrine and/or paracrine signaling molecule by activating plasma membrane-localized purinergic receptors. Stimulation of purinergic P2X7 receptor (P2X7R) increases cytosolic Ca2+ ([Ca2+]c), which in turn activates Pannexin 1 (Panx1) channel. In earlier studies, Panx1 and P2X7R have been shown to interact physically. Also, both the channels have been implicated in similar pathophysiological processes. In this study, we investigated the effect of Panx1 on P2X7R-mediated Ca2+influx. Panx1 attenuated P2X7R-mediated [Ca2+]c rise in CHO-K1 and HEK-293 cells. [Ca2+]c rise was higher in Panx1 knockdown astrocytes. The inhibitory effect was unaffected in the presence of Panx1 blocker, carbenoxolone. The region between 350th and 386th amino acid residues in the carboxyl terminus (CT) of Panx1 was found to be crucial for inhibiting P2X7R. Like full-length Panx1, the CT (350th to 426th amino acids) alone was able to attenuate the [Ca2+]c rise. Further, CT prevented cell death caused by P2X7R overactivation. Based on our results, we propose a novel pro-survival role of Panx1 exerted by modulating P2X7R.


Asunto(s)
Conexinas , Receptores Purinérgicos P2X7 , Adenosina Trifosfato , Muerte Celular , Conexinas/genética , Conexinas/metabolismo , Células HEK293 , Humanos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA