Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38542536

RESUMEN

Immunotherapies have revolutionized cancer treatment approaches. Because not all patients respond positively to immune therapeutic agents, it represents a challenge for scientists who strive to understand the mechanisms behind such resistance. In-depth exploration of tumor biology, using novel technologies such as omics science, can help decode the role of the tumor immune microenvironment (TIME) in producing a response to the immune blockade strategies. It can also help to identify biomarkers for patient stratification and personalized treatment. This review aims to explore these new models and highlight their possible pivotal role in changing clinical practice.


Asunto(s)
Multiómica , Neoplasias , Humanos , Neoplasias/terapia , Inmunoterapia , Biomarcadores de Tumor , Medicina de Precisión , Microambiente Tumoral
2.
Cancers (Basel) ; 16(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38672650

RESUMEN

Cluster of differentiation 44 (CD44) is a non-kinase cell surface glycoprotein. It is overexpressed in several cell types, including cancer stem cells (CSCs). Cells overexpressing CD44 exhibit several CSC traits, such as self-renewal, epithelial-mesenchymal transition (EMT) capability, and resistance to chemo- and radiotherapy. The role of CD44 in maintaining stemness and the CSC function in tumor progression is accomplished by binding to its main ligand, hyaluronan (HA). The HA-CD44 complex activates several signaling pathways that lead to cell proliferation, adhesion, migration, and invasion. The CD44 gene regularly undergoes alternative splicing, resulting in the standard (CD44s) and variant (CD44v) isoforms. The different functional roles of CD44s and specific CD44v isoforms still need to be fully understood. The clinicopathological impact of CD44 and its isoforms in promoting tumorigenesis suggests that CD44 could be a molecular target for cancer therapy. Furthermore, the recent association observed between CD44 and KRAS-dependent carcinomas and the potential correlations between CD44 and tumor mutational burden (TMB) and microsatellite instability (MSI) open new research scenarios for developing new strategies in cancer treatment. This review summarises current research regarding the different CD44 isoform structures, their roles, and functions in supporting tumorigenesis and discusses its therapeutic implications.

3.
Cancers (Basel) ; 16(7)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38611042

RESUMEN

Colorectal cancer (CRC) is a leading tumor worldwide. In CRC, the angiogenic pathway plays a crucial role in cancer development and the process of metastasis. Thus, anti-angiogenic drugs represent a milestone for metastatic CRC (mCRC) treatment and lead to significant improvement of clinical outcomes. Nevertheless, not all patients respond to treatment and some develop resistance. Therefore, the identification of predictive factors able to predict response to angiogenesis pathway blockade is required in order to identify the best candidates to receive these agents. Unfortunately, no predictive biomarkers have been prospectively validated to date. Over the years, research has focused on biologic factors such as genetic polymorphisms, circulating biomarkers, circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and microRNA. Moreover, research efforts have evaluated the potential correlation of molecular biomarkers with imaging techniques used for tumor assessment as well as the application of imaging tools in clinical practice. In addition to functional imaging, radiomics, a relatively newer technique, shows real promise in the setting of correlating molecular medicine to radiological phenotypes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA