Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
World J Microbiol Biotechnol ; 39(6): 163, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37067654

RESUMEN

Endophytes have a wide range of potential in maintaining plant health and sustainable agricultural environmental conditions. In this study, we analysed the diversity of endophytic bacteria in four mulberry cultivars with different resistance capacity against bacterial wilt using metagenomic sequencing and culture-dependent approaches. We further assessed the role of 11 shared genera in the control of bacterial wilt of mulberry. The results of the present study showed that Actinobacteria, Firmicutes, and Proteobacteria were the three dominant phyla in all communities, with the representative genera Acinetobacter and Pseudomonas. The diversity analysis showed that the communities of the highly and moderately resistant varieties were more diverse compared to those of the weakly resistant and susceptible varieties. The control tests of mulberry bacterial wilt showed that Pantoea, Atlantibacter, Stenotrophomonas, and Acinetobacter were effective, with a control rate of over 80%. Microbacterium and Kosakonia were moderately effective, with a control rate between 50 and 80%. At the same time, Escherichia, Lysinibacillus, Pseudomonas, and Rhizobium were found to be less effective, with a control rate of less than 40%. In conclusion, this study provides a reasonable experimental reference data for the control of bacterial wilt of mulberry.


Asunto(s)
Morus , Morus/microbiología , Bacterias/genética , Proteobacteria , Firmicutes , Endófitos/genética
2.
Cryobiology ; 102: 82-91, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34297995

RESUMEN

Previous studies have shown that melatonin (MT) can ameliorate vitrification-inflicted damage in mouse germinal vesicle (GV) oocytes, however, the key mechanistic basis of this improvement still remains poorly understood. This study was conducted to investigate whether MT can improve in vitro developmental potential of vitrified-warmed GV oocytes through its receptors. The fresh oocytes were randomly divided into four groups: untreated (control group, F), vitrified by open-pulled straw method (vitrification group, V), vitrification group with 100 nmol/L MT supplementation (vitrification + MT group, VM), and with 100 nmol/L MT plus 100 nmol/L luzindole administration (vitrification + MT + luzindole group, VML) or with 50 nmol/L ramelteon addition (vitrification + ramelteon group; VR). After warming, oocytes were cultured in vitro, and MT receptors (MTRs), MAD2 (mitotic arrest deficient 2), Securin and CyclinB1 protein levels and spindle morphology were evaluated. The ratio of oocytes developed to the metaphase I (MI) and metaphase II (MII) stages was also assessed. The results showed that after vitrification-warming, the in vitro maturation rate of GV oocytes was significantly lower compared to the control (F) group. Vitrification also significantly impaired the spindle morphology, decreased the protein level of MTRs and Securin, and decreased MAD2 levels in MI oocytes. However, when MT or ramelteon (MTRs agonist) were added (group wise) to warming and maturation media, the maturation rate of GV oocytes was significantly increased, the normal proportion of the spindle morphology increased, and the expression level of MAD2 increased in their resulting MI oocytes compared to the vitrification group. However, following addition of both MT and ramelteon, the maturation rate of GV oocyte showed no significant difference between VML and vitrification groups. The spindle morphology and MAD2 levels in MI oocytes were comparable to the vitrification group but differed significantly from the VM group. Taken together, finding of the present study shows that MT (100 nmol/L) can ameliorate the in vitro maturation of vitrified-warmed mouse GV oocytes, potentially by improving the spindle morphology, modulating MAD2 protein level and promoting the development of MI stage oocytes through MTRs.


Asunto(s)
Melatonina , Animales , Criopreservación/métodos , Técnicas de Maduración In Vitro de los Oocitos , Melatonina/farmacología , Metafase , Ratones , Oocitos , Distribución Aleatoria , Vitrificación
3.
Int J Mol Sci ; 20(4)2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30781801

RESUMEN

Due to lower farrowing rate and reduced litter size with frozen-thawed semen, over 90% of artificial insemination (AI) is conducted using liquid stored boar semen. Although substantial progress has been made towards optimizing the cryopreservation protocols for boar sperm, the influencing factors and underlying mechanisms related to cryoinjury and freeze tolerance of boar sperm remain largely unknown. In this study, we report the differential expression of mRNAs and miRNAs between fresh and frozen-thawed boar sperm using high-throughput RNA sequencing. Our results showed that 567 mRNAs and 135 miRNAs were differentially expressed (DE) in fresh and frozen-thawed boar sperm. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the majority of DE mRNAs were enriched in environmental information processing such as cytokine-cytokine receptor interactions, PI3K-Akt signaling, cell adhesion, MAPK, and calcium signaling pathways. Moreover, the targets of DE miRNAs were enriched in significant GO terms such as cell process, protein binding, and response to stimuli. In conclusion, we speculate that DE mRNAs and miRNAs are heavily involved in boar sperm response to environment stimuli, apoptosis, and metabolic activities. The differences in expression also reflect the various structural and functional changes in sperm during cryopreservation.


Asunto(s)
MicroARNs/genética , ARN Mensajero/genética , Preservación de Semen , Análisis de Secuencia de ARN/métodos , Espermatozoides/metabolismo , Porcinos/genética , Transcriptoma/genética , Animales , Secuencia de Bases , Análisis por Conglomerados , Perfilación de la Expresión Génica , Ontología de Genes , Masculino , MicroARNs/metabolismo , ARN Mensajero/metabolismo
4.
BMC Genomics ; 19(1): 736, 2018 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-30305024

RESUMEN

BACKGROUND: Capacitation, a prerequisite for oocyte fertilization, is a complex process involving series of structural and functional changes in sperms such as membrane modifications, modulation of enzyme activities, and protein phosphorylation. In order to penetrate and fertilize an oocyte, mammalian sperms must undergo capacitation. Nevertheless, the process of sperm capacitation remains poorly understood and requires further elucidation. In the current study, via high throughput sequencing, we identified and explored the differentially expressed microRNAs (miRNAs) and mRNAs involved in boar sperm capacitation. RESULTS: We identified a total of 5342 mRNAs and 204 miRNAs that were differentially expressed in fresh and capacitated boar sperms. From these, 12 miRNAs (8 known and 4 newly identified miRNAs) and their differentially expressed target mRNAs were found to be involved in sperm capacitation-related PI3K-Akt, MAPK, cAMP-PKA and Ca2+signaling pathways. CONCLUSIONS: Our study is first to provide the complete miRNA and transcriptome profiles of boar sperm. Our findings provide important insights for the understanding of the RNA profile in boar sperm and future elucidation of the underlying molecular mechanism relevant to mammalian sperm capacitation.


Asunto(s)
Perfilación de la Expresión Génica , MicroARNs/genética , Capacitación Espermática/genética , Espermatozoides/metabolismo , Animales , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , ARN Mensajero/genética , Espermatozoides/fisiología , Porcinos
5.
BMC Genomics ; 19(1): 828, 2018 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-30458711

RESUMEN

BACKGROUND: Pigeon crop has the unique ability to produce a nutrient rich substance termed pigeon 'milk' (PM), which has functional resemblance with the mammalian milk. Previous researches have demonstrated that a large number of exosomes and exosomal miRNAs exist in mammalian milk, and many of them are associated with immunity, growth and development. However, to date, little is known about the exosomes and exosomal miRNAs in PM. RESULTS: In this study, we isolated the exosomes from PM and used small RNA sequencing to investigate the distribution and expression profiles of exosomal miRNAs. A total of 301 mature miRNAs including 248 conserved and 53 novel miRNAs were identified in five lactation stages i.e. 1d, 5d, 10d, 15d, and 20d. From these, four top 10 conserved miRNAs (cli-miR-21-5p, cli-miR-148a-3p, cli-miR-10a-5p and cli-miR-26a-5p) were co-expressed in all five stages. We speculate that these miRNAs may have important role in the biosynthesis and metabolism of PM. Moreover, similar to the mammalian milk, a significant proportion of immune and growth-related miRNAs were also present and enriched in PM exosomes. Furthermore, we also identified 41 orthologous miRNAs group (giving rise to 81 mature miRNA) commonly shared with PM, human, bovine and porcine breast milk. Additionally, functional enrichment analysis revealed the role of exosomal miRNAs in organ development and in growth-related pathways including the MAPK, Wnt and insulin pathways. CONCLUSIONS: To sum-up, this comprehensive analysis will contribute to a better understanding of the underlying functions and regulatory mechanisms of PM in squabs.


Asunto(s)
Secreciones Corporales/metabolismo , Columbidae/genética , Exosomas/genética , Perfilación de la Expresión Génica , MicroARNs/genética , Animales , Bovinos , Femenino , Ontología de Genes , Humanos , Lactancia/genética , Leche/metabolismo , Leche Humana/metabolismo , Especificidad de la Especie , Porcinos , Factores de Tiempo
6.
Cryobiology ; 81: 206-209, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29476719

RESUMEN

The present study aimed to investigate the effect of vitrification on the expression of fertilization related genes (CD9 and CD81) and DNA methyl transferases (DNMT1 and DNMT3b) in bovine germinal vesicle (GV) oocytes and their resulting metaphase Ⅱ (MⅡ) stages after in vitro maturation culture. GV oocytes were vitrified using the open-pulled straw method; after warming, they were cultured in vitro. The vitrified-warmed GV oocytes and more developed MII oocytes were used to calculate the maturation rates (first polar body extrusion under a stereomicroscopy), and to detect mRNA expression (qRT-PCR). Fresh GV oocytes and their in vitro-derived MII oocytes served as controls. The results showed that both the maturation rate (54.23% vs. 42.93%) and the relative abundance of CD9 mRNA decreased significantly (p < 0.05) in bovine GV oocytes after vitrification, but the expression of CD81 and DNMT3b increased significantly. After in vitro maturation of vitrified GV oocytes, the resulting MII oocytes showed lower (p < 0.05) mRNA expression of genes (CD9, CD81, DNMT1 and DNMT3b) when compared to the control group (MII oocytes). Altogether, vitrification decreased the maturation rate of bovine GV oocytes and changed the expression of fertilization related genes and DNA methyl transferases during in vitro maturation.


Asunto(s)
Criopreservación/métodos , Oocitos/metabolismo , Oogénesis/fisiología , Tetraspanina 28/biosíntesis , Tetraspanina 29/biosíntesis , Vitrificación , Animales , Bovinos , Femenino , Oocitos/efectos de los fármacos , Oogénesis/efectos de los fármacos
7.
Int J Mol Sci ; 19(12)2018 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-30551578

RESUMEN

This study aimed to investigate the effect of melatonin on the cell cycle of parthenogenetic embryos derived from vitrified mouse metaphase II (MII) oocytes. Fresh oocytes were randomly allocated into three groups: untreated (control), or vitrified by the open-pulled straw method without (Vitrification group) or with melatonin (MT) supplementation (Vitrification + MT group). After warming, oocytes were parthenogenetically activated and cultured in vitro, then the percentage of embryos in the G1/S phase, the levels of reactive oxygen species (ROS) and glutathione (GSH), and the mRNA expression of cell cycle-related genes (P53, P21 and E2F1) in zygotes and their subsequent developmental potential in vitro were evaluated. The results showed that the vitrification/warming procedures significantly decreased the frequency of the S phase, markedly increased ROS and GSH levels and the expression of P53 and P21 genes, and decreased E2F1 expression in zygotes at the G1 stage and their subsequent development into 2-cell and blastocyst stage embryos. However, when 10-9 mol/L MT was administered for the whole duration of the experiment, the frequency of the S phase in zygotes was significantly increased, while the other indicators were also significantly improved and almost recovered to the normal levels shown in the control. Thus, MT might promote G1-to-S progression via regulation of ROS, GSH and cell cycle-related genes, potentially increasing the parthenogenetic development ability of vitrified⁻warmed mouse oocytes.


Asunto(s)
Proteínas de Ciclo Celular/genética , Glutatión/metabolismo , Melatonina/farmacología , Oocitos/citología , Partenogénesis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Animales , Criopreservación , Técnicas de Cultivo de Embriones , Femenino , Fertilización In Vitro , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Ratones , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Distribución Aleatoria , Vitrificación , Cigoto/crecimiento & desarrollo
8.
Int J Mol Sci ; 19(10)2018 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-30297640

RESUMEN

Sperm cryopreservation and artificial insemination are important methods for giant panda breeding and preservation of extant genetic diversity. Lower conception rates limit the use of artificial insemination with frozen-thawed giant panda sperm, due to the lack of understanding of the cryodamaging or cryoinjuring mechanisms in cryopreservation. Long non-coding RNAs (lncRNAs) are involved in regulating spermatogenesis. However, their roles during cryopreservation remain largely unexplored. Therefore, this study aimed to identify differentially expressed lncRNAs and mRNAs associated with cryodamage or freeze tolerance in frozen-thawed sperm through high throughput sequencing. A total of 61.05 Gb clean reads and 22,774 lncRNA transcripts were obtained. From the sequencing results, 1477 significantly up-regulated and 1,396 significantly down-regulated lncRNA transcripts from fresh and frozen-thawed sperm of giant panda were identified. GO and KEGG showed that the significantly dysregulated lncRNAs and mRNAs were mainly involved in regulating responses to cold stress and apoptosis, such as the integral component of membrane, calcium transport, and various signaling pathways including PI3K-Akt, p53 and cAMP. Our work is the first systematic profiling of lncRNA and mRNA in fresh and frozen-thawed giant panda sperm, and provides valuableinsights into the potential mechanism of cryodamage in sperm.


Asunto(s)
Criopreservación , Preservación de Semen/efectos adversos , Espermatozoides/metabolismo , Transcriptoma , Ursidae/genética , Animales , Especies en Peligro de Extinción , Masculino , ARN Largo no Codificante/genética , ARN Mensajero/genética , Preservación de Semen/métodos
9.
Molecules ; 23(12)2018 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-30469536

RESUMEN

Selenium (Se) is an essential micronutrient that has several important functions in animal and human health. The biological functions of Se are carried out by selenoproteins (encoded by twenty-five genes in human and twenty-four in mice), which are reportedly present in all three domains of life. As a component of selenoproteins, Se has structural and enzymatic functions; in the latter context it is best recognized for its catalytic and antioxidant activities. In this review, we highlight the biological functions of Se and selenoproteins followed by an elaborated review of the relationship between Se and female reproductive function. Data pertaining to Se status and female fertility and reproduction are sparse, with most such studies focusing on the role of Se in pregnancy. Only recently has some light been shed on its potential role in ovarian physiology. The exact underlying molecular and biochemical mechanisms through which Se or selenoproteins modulate female reproduction are largely unknown; their role in human pregnancy and related complications is not yet sufficiently understood. Properly powered, randomized, controlled trials (intervention vs. control) in populations of relatively low Se status will be essential to clarify their role. In the meantime, studies elucidating the potential effect of Se supplementation and selenoproteins (i.e., GPX1, SELENOP, and SELENOS) in ovarian function and overall female reproductive efficiency would be of great value.


Asunto(s)
Reproducción , Selenio/metabolismo , Selenoproteínas/metabolismo , Animales , Femenino , Humanos , Ovario/fisiología , Embarazo
10.
Chemosphere ; 358: 142086, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38670510

RESUMEN

Furan is generated in a wide array of heat-treated foods through thermal degradation, leading to severe impairments in the male reproductive system. The main objective of this study was to investigate the potential of pomegranate peel extract (PGPE) in mitigating testicular dysfunctions induced by furan. Male rats were categorized into four groups: control/untreated, PGPE, furan, and PGPE + furan group. The study results revealed that furan-treated rats exhibited significantly elevated aminotransferase and phosphatase activity, and also generated increased oxidative stress, and reduced antioxidative stress protein activity. Additionally, protein content levels (ALT, AST, ALP, and ACP) and activities of steroidogenic Leydig cell hydroxysteroid dehydrogenase (3ß-HSD and 17ß-HSD) enzymes were significantly decreased. Significant variations in testicular parameters, apoptotic genes (Bcl-2, P53, and Caspase3), inflammatory and anti-inflammatory cytokines (IL1ß, IL10), male sex hormones follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone, and sperm quality were also observed. Furthermore, testicular histological abnormalities were confirmed by biochemical and molecular modifications. Notably, PGPE pre-treated furan-intoxicated animals exhibited significant improvements in most of the assessed parameters compared to furan-treated groups. In conclusion, PGPE presents essential preventive measures and a novel pharmacological potential therapy against furan-induced testicular injury.


Asunto(s)
Apoptosis , Furanos , Estrés Oxidativo , Extractos Vegetales , Granada (Fruta) , Testículo , Masculino , Animales , Estrés Oxidativo/efectos de los fármacos , Testículo/efectos de los fármacos , Testículo/metabolismo , Testículo/patología , Ratas , Extractos Vegetales/farmacología , Extractos Vegetales/química , Apoptosis/efectos de los fármacos , Granada (Fruta)/química , Furanos/farmacología , Testosterona/metabolismo , Hormona Luteinizante , 17-Hidroxiesteroide Deshidrogenasas/metabolismo , Hormona Folículo Estimulante , Células Intersticiales del Testículo/efectos de los fármacos , Células Intersticiales del Testículo/metabolismo , Antioxidantes/metabolismo
11.
Chemosphere ; 357: 142096, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663676

RESUMEN

Cypermethrin (CYP) is a chemical of emerging concern which has persistent and bioaccumulating impacts as it can be found extensively in freshwater ecosystem and agricultural products. It has exposure risk and toxic effects over human edible fish, as common carp. Four groups were designed for toxicity assessment and detoxification approach: control group (CL), CYP exposure group (CYP), CYP + 10% M. oleifera leaves and 10% M. oleifera seeds (CMO group), 10% M. oleifera leaves and 10% M. oleifera seeds (MO group). Trial period was forty days during which cohort of 240 fish in CYP and CMO group was exposed to 1/5 of 96h LC50 of CYP (0.1612 µg/L). CYP-exposed carp exhibited lower growth parameters, but carp fed with 10% M. oleifera seeds and leaves showed significant improvement in growth rate (SGR, RGR) and weight gain (WG) as compared to the control group. CYP exposure negatively affected haemato-biochemical parameters. Moreover, CYP exposure also led to oxidative stress, damaged immunological parameters, genotoxicity and histopathological damage in liver and intestinal cells. Whereas, M. oleifera supplementation has ameliorated these conditions. Thereby, supplementation with M. oleifera is potential and novel therapeutic detoxication approach for common carp and human health against persistent and bioaccumulating emerging chemicals.


Asunto(s)
Carpas , Insecticidas , Piretrinas , Contaminantes Químicos del Agua , Pruebas de Toxicidad Crónica , Insecticidas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Biomarcadores/metabolismo , Moringa oleifera , Suplementos Dietéticos , Semillas , Hojas de la Planta , Inactivación Metabólica , Piretrinas/toxicidad
12.
Front Vet Sci ; 10: 1086985, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36814466

RESUMEN

Yaks play an important role in the livelihood of the people of the Qinghai-Tibet Plateau (QTP) and contribute significantly to the economy of the different countries in the region. Yaks are commonly raised at high altitudes of ~ 3,000-5,400 m above sea level. They provide many important products, namely, milk, meat, fur, and manure, as well as social status, etc. Yaks were domesticated from wild yaks and are present in the remote mountains of the QTP region. In the summer season, when a higher quantity of pasture is available in the mountain region, yaks use their long tongues to graze the pasture and spend ~ 30-80% of their daytime grazing. The remaining time is spent walking, resting, and doing other activities. In the winter season, due to heavy snowfall in the mountains, pasture is scarce, and yaks face feeding issues due to pasture scarcity. Hence, the normal body weight of yaks is affected and growth retardation occurs, which consequently affects their production performance. In this review article, we have discussed the domestication of yaks, the feeding pattern of yaks, the difference between the normal and growth-retarded yaks, and also their microbial community and their influences. In addition, blood biochemistry, the compositions of the yaks' milk and meat, and reproduction are reported herein. Evidence suggested that yaks play an important role in the daily life of the people living on the QTP, who consume milk, meat, fur, use manure for fuel and land fertilizer purposes, and use the animals for transportation. Yaks' close association with the people's well-being and livelihood has been significant.

13.
Front Plant Sci ; 14: 1206691, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37680359

RESUMEN

Introduction: Mulberry bacterial wilt is a serious destructive soil-borne disease caused by a complex and diverse group of pathogenic bacteria. Given that the bacterial wilt has been reported to cause a serious damage to the yield and quality of mulberry, therefore, elucidation of its main pathogenic groups is essential in improving our understanding of this disease and for the development of its potential control measures. Methods: In this study, combined metagenomic sequencing and culture-dependent approaches were used to investigate the microbiome of healthy and bacterial wilt mulberry samples. Results: The results showed that the healthy samples had higher bacterial diversity compared to the diseased samples. Meanwhile, the proportion of opportunistic pathogenic and drug-resistant bacterial flora represented by Acinetobacter in the diseased samples was increased, while the proportion of beneficial bacterial flora represented by Proteobacteria was decreased. Ralstonia solanacearum species complex (RSSC), Enterobacter cloacae complex (ECC), Klebsiella pneumoniae, K. quasipneumoniae, K. michiganensis, K. oxytoca, and P. ananatis emerged as the main pathogens of the mulberry bacterial wilt. Discussion: In conclusion, this study provides a valuable reference for further focused research on the bacterial wilt of mulberry and other plants.

14.
Biol Trace Elem Res ; 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37817045

RESUMEN

Autophagy is commonly referred as self-eating and a complex cellular process that is involved in the digestion of protein and damaged organelles through a lysosome-dependent mechanism, and this mechanism is essential for maintaining proper cellular homeostasis. Selenium is a vital trace element that plays essential functions in antioxidant defense, redox state control, and range of particular metabolic processes. Selenium nanoparticles have become known as a promising agent for biomedical use, because of their high bioavailability, low toxicity, and degradability. However, and in recent years, they have attracted the interest of researchers in developing anticancer nano-drugs. Selenium nanoparticles can be used as a potential therapeutic agent or in combination with other agents to act as carriers for the development of new treatments. More intriguingly, selenium nanoparticles have been extensively shown to impact autophagy signaling, allowing selenium nanoparticles to be used as possible cancer treatment agents. This review explored the connections between selenium and autophagy, followed by developments and current advances of selenium nanoparticles for autophagy control in various clinical circumstances. Furthermore, this study examined the functions and possible processes of selenium nanoparticles in autophagy regulation, which may help us understand how selenium nanoparticles regulate autophagy for the potential cancer treatment.

15.
Cells ; 11(22)2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36429002

RESUMEN

Oocyte cryopreservation is widely used in assisted-reproductive technology and animal production. However, cryopreservation not only induces a massive accumulation of reactive oxygen species (ROS) in oocytes, but also leads to oxidative-stress-inflicted damage to mitochondria and the endoplasmic reticulum. These stresses lead to damage to the spindle, DNA, proteins, and lipids, ultimately reducing the developmental potential of oocytes both in vitro and in vivo. Although oocytes can mitigate oxidative stress via intrinsic antioxidant systems, the formation of ribonucleoprotein granules, mitophagy, and the cryopreservation-inflicted oxidative damage cannot be completely eliminated. Therefore, exogenous antioxidants such as melatonin and resveratrol are widely used in oocyte cryopreservation to reduce oxidative damage through direct or indirect scavenging of ROS. In this review, we discuss analysis of various oxidative stresses induced by oocyte cryopreservation, the impact of antioxidants against oxidative damage, and their underlying mechanisms. We hope that this literature review can provide a reference for improving the efficiency of oocyte cryopreservation.


Asunto(s)
Antioxidantes , Estrés Oxidativo , Animales , Antioxidantes/farmacología , Especies Reactivas de Oxígeno , Oocitos , Criopreservación
16.
Animals (Basel) ; 12(7)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35405818

RESUMEN

This experiment was conducted to investigate the effects of maternal catalase (CAT) supplementation on reproductive performance, antioxidant enzyme activities, mineral transport, and mRNA expression of related genes in sows and offspring. A total of 40 pregnant sows at 95 days of gestation with similar parity (3−5 parities) and back-fat thickness were assigned randomly and equally into the control (CON) group (fed a basal diet) and CAT group (fed a basal diet supplemented with 660 mg/kg CAT; CAT activity, 280 U/g). The reproductive performance was recorded, and the placenta and blood samples of sows and neonatal piglets, as well as the jejunum and ileum samples from neonatal boars (eight replicates per group), were collected. Results showed that dietary supplementation with CAT significantly decreased the intrauterine growth restriction (IUGR) rate and increased the activity of serum CAT in neonatal piglets and umbilical cords (p < 0.05). In addition, CAT supplementation tended to improve total antioxidant capacity (T-AOC) levels in the maternal serum (p = 0.089) and umbilical cords of piglets (p = 0.051). The serum calcium (Ca), manganese (Mn), and zinc (Zn) of farrowing sows and Mn concentration in the umbilical cord, and serum Ca, magnesium (Mg), copper (Cu), and Mn of neonatal piglets were significantly increased (p < 0.05) in the CAT group. CAT supplementation downregulated mRNA expression of TRPV6 and CTR1 (p < 0.05), Cu/Zn SOD (p = 0.086) in the placenta and tended to increase the mRNA expression of the glutathione peroxidase 1 (GPX1) (p = 0.084), glutathione peroxidase 4 (GPX4) (p = 0.063), and CAT (p = 0.052) genes in the ileum of piglets. These results showed that the maternal CAT supplementation improved fetal growth by decreasing the IUGR rate, and modulated antioxidant activity, as well as mineral elements in the pregnant sows and their piglets.

17.
Anim Reprod Sci ; 233: 106850, 2021 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-34537566

RESUMEN

Melatonin (MT) is a potent antioxidant with useful applications in several fields. Due to the capacity to scavenge free radicals and enhance cellular endogenous antioxidant defenses, MT is widely used in sperm cryopreservation to protect against oxidative stress-induced damage in frozen-thawed sperm. In this article, there is a review of positive effects of MT supplementation in cryopreservation of sperm from domestic ruminants and swine. There is direct or indirect scavenging of free radicals, preventing lipid peroxidation (LPO), and reducing oxidative stress, therefore, protecting membrane and DNA integrity, enhancing post-thaw antioxidant and enzymatic functions to maintain mitochondrial functions and activity, and regulating ATP production and utilization leading to maintenance of sperm quality, motility, and viability. In addition, MT reportedly inhibits sperm apoptosis, potentially by enhancing sperm viability and modulating abundances of mRNA transcripts.

18.
Biol Trace Elem Res ; 199(2): 633-648, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32430805

RESUMEN

Female reproductive (ovarian) aging is characterized by a marked decline in quantity and quality of follicles and oocytes, as well as alterations in the surrounding ovarian stroma. In our previous report, we have shown that dietary selenium (Se) insufficiency and supplementation differentially impacted the reproductive efficiency in aging mice; however, the precise understanding of such modulation is still incomplete. In the present study, we sought to determine the impact of low (mildly low level) and moderately high (medium level) Se diets on expression profile of non-selenoprotein genes in the ovaries of aging mice. For this purpose, the aged mice were divided in two groups and fed either a low Se (Se-L; 0.08 mg Se/kg) diet or a moderately high Se (Se-M; 0.33 mg Se/kg) diet. RNA-seq analysis revealed that a total of 168 genes were differentially expressed between the two groups. From these, 72 and 96 differentially expressed genes (DEGs) were found to be upregulated and downregulated, respectively. Gene Ontology (GO) and pathways enrichment (KEGG) analyses revealed that these DEGs were enriched in several key GO terms and biological pathways including PI3K-Akt signaling pathway, steroid hormone biosynthesis, signaling pathways regulating pluripotency of stem cells, Hippo signaling pathway, ovarian steroidogenesis, and Wnt signaling pathway. Further filtering of RNA-seq data revealed that several DEGs such as Star, Hsd3b6, Scd1, Bmp7, Aqp8, Gas1, Fzd1, and Wwc1 were implicated in key ovarian- and fertility-related functions. In addition, some of the DEGs were related to ER homeostasis and/or proteostasis. These results highlight that dietary low and moderately high (medium level) Se diets, in addition to modulation of selenoproteins, can also have an impact on expression of several non-selenoprotein genes in the ovaries of aging mice. To sum up, these findings add more value to our understanding of Se modulation of ovarian functions and female fertility and will pave a way for the focused mechanistic and functional studies in this domain.


Asunto(s)
Selenio , Envejecimiento/genética , Animales , Proteínas de Ciclo Celular , Femenino , Fertilidad/genética , Proteínas Ligadas a GPI , Ratones , Ovario/metabolismo , Fosfatidilinositol 3-Quinasas , Proteostasis , Selenio/farmacología , Selenoproteínas/genética , Transcriptoma
19.
Front Vet Sci ; 8: 752001, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34631868

RESUMEN

Previous studies have shown that melatonin can mitigate cryopreservation-induced mitochondrial dysfunction in oocytes; however, the underlying molecular mechanism remains unclear. The objective of the present study was to investigate whether melatonin can improve the mitochondrial function during in vitro maturation of vitrified-warmed mouse germinal vesicle (GV) oocytes by modulating phosphorylation of dynamin related protein 1 (Drp1). Vitrification/warming procedures resulted in the following: (1) After cryopreservation of mouse GV oocytes, the phosphorylation level of Drp1 at Ser616 (p-Drp1 Ser616) in metaphase II (MII) oocytes was increased (P < 0.05). Furthermore, the rates of in vitro maturation, cleavage and blastocyst formation after parthenogenetic activation were decreased (P < 0.05). (2) In MII oocytes, the expression levels of translocase of the mitochondrial outer membrane 20 (TOMM20), mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) content, and mRNA levels of mitochondrial biogenesis-related genes (Sirt1, Pgc-1α, Tfam) were all decreased (P < 0.05), and (3) Reactive oxygen species (ROS) level, early apoptosis level, Cytochrome C release and mRNA levels of pro-apoptotic related genes (Bax, Caspase9, Caspase3) in MII oocytes were all increased (P < 0.05). The results of this study further revealed that negative impacts of GV oocyte cryopreservation were mitigated by supplementation of warming and in vitro maturation media with 10-7mol /L melatonin or 2 x 10-5mol/L Mdivi-1 (Drp1 inhibitor). Therefore, we concluded that 10-7mol/L melatonin improved mitochondrial function, reduced oxidative stress and inhibited apoptosis by regulating phosphorylation of Drp1, thereby enhancing in vitro development of vitrified-warmed mouse GV oocytes.

20.
Animals (Basel) ; 11(8)2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34438783

RESUMEN

Previously it was reported that melatonin could mitigate oxidative stress caused by oocyte cryopreservation; however, the underlying molecular mechanisms which cause this remain unclear. The objective was to explore whether melatonin could reduce oxidative stress during in vitro maturation of vitrified-warmed mouse germinal vesicle (GV) oocytes through the Nrf2 signaling pathway or its receptors. During in vitro maturation of vitrified-warmed mouse GV oocytes, there were decreases (p < 0.05) in the development rates of metaphase I (MI) oocytes and metaphase II (MII) and spindle morphology grades; increases (p < 0.05) in the reactive oxygen species (ROS) levels; and decreases (p < 0.05) in expressions of Nrf2 signaling pathway-related genes (Nrf2, SOD1) and proteins (Nrf2, HO-1). However, adding 10-7 mol/L melatonin to both the warming solution and maturation solutions improved (p < 0.05) these indicators. When the Nrf2 protein was specifically inhibited by Brusatol, melatonin did not increase development rates, spindle morphology grades, genes, or protein expressions, nor did it reduce vitrification-induced intracellular oxidative stress in GV oocytes during in vitro maturation. In addition, when melatonin receptors were inhibited by luzindole, the ability of melatonin to scavenge intracellular ROS was decreased, and the expressions of genes (Nrf2, SOD1) and proteins (Nrf2, HO-1) were not restored to control levels. Therefore, we concluded that 10-7 mol/L melatonin acted on the Nrf2 signaling pathway through its receptors to regulate the expression of genes (Nrf2, SOD1) and proteins (Nrf2, HO-1), and mitigate intracellular oxidative stress, thereby enhancing in vitro development of vitrified-warmed mouse GV oocytes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA