Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nucleic Acids Res ; 51(D1): D717-D722, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36215029

RESUMEN

Gut microbiota plays a significant role in maintaining host health, and conversely, disorders potentially lead to dysbiosis, an imbalance in the composition of the gut microbial community. Intervention approaches, such as medications, diets, and several others, also alter the gut microbiota in either a beneficial or harmful direction. In 2020, the gutMDisorder was developed to facilitate researchers in the investigation of dysbiosis of gut microbes as occurs in various disorders as well as with therapeutic interventions. The database has been updated this year, following revision of previous publications and newly published reports to manually integrate confirmed associations under multitudinous conditions. Additionally, the microbial contents of downloaded gut microbial raw sequencing data were annotated, the metadata of the corresponding hosts were manually curated, and the interactive charts were developed to enhance visualization. The improvements have assembled into gutMDisorder v2.0, a more advanced search engine and an upgraded web interface, which can be freely accessed via http://bio-annotation.cn/gutMDisorder/.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Disbiosis , Bases de Datos Factuales , Fenotipo
2.
Nucleic Acids Res ; 51(D1): D1345-D1352, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36189892

RESUMEN

microbioTA (http://bio-annotation.cn/microbiota) was constructed to provide a comprehensive, user-friendly resource for the application of microbiome data from diseased tissues, helping users improve their general knowledge and deep understanding of tissue-derived microbes. Various microbes have been found to colonize cancer tissues and play important roles in cancer diagnoses and outcomes, with many studies focusing on developing better cancer-related microbiome data. However, there are currently no independent, comprehensive open resources cataloguing cancer-related microbiome data, which limits the exploration of the relationship between these microbes and cancer progression. Given this, we propose a new strategy to re-align the existing next-generation sequencing data to facilitate the mining of hidden sequence data describing the microbiome to maximize available resources. To this end, we collected 417 publicly available datasets from 25 human and 14 mouse tissues from the Gene Expression Omnibus database and use these to develop a novel pipeline to re-align microbiome sequences facilitating in-depth analyses designed to reveal the microbial profile of various cancer tissues and their healthy controls. microbioTA is a user-friendly online platform which allows users to browse, search, visualize, and download microbial abundance data from various tissues along with corresponding analysis results, aimimg at providing a reference for cancer-related microbiome research.


Asunto(s)
Microbiota , Neoplasias , Animales , Humanos , Ratones , Bases de Datos Genéticas , Microbiota/genética , Neoplasias/genética , Neoplasias/microbiología , Filogenia , Especificidad de Órganos
3.
Nucleic Acids Res ; 50(D1): D867-D874, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34634820

RESUMEN

SCovid (http://bio-annotation.cn/scovid) aims at providing a comprehensive resource of single-cell data for exposing molecular characteristics of coronavirus disease 2019 (COVID-19) across 10 human tissues. COVID-19, an epidemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been found to be accompanied with multiple-organ failure since its first report in Dec 2019. To reveal tissue-specific molecular characteristics, researches regarding to COVID-19 have been carried out widely, especially at single-cell resolution. However, these researches are still relatively independent and scattered, limiting the comprehensive understanding of the impact of virus on diverse tissues. To this end, we developed a single-cell atlas of COVID-19. Firstly we collected 21 single-cell datasets of COVID-19 across 10 human tissues paired with control datasets. Then we constructed a pipeline for the analysis of these datasets to reveal molecular characteristics of COVID-19 based on manually annotated cell types. The current version of SCovid documents 1 042 227 single cells of 21 single-cell datasets across 10 human tissues, 11 713 stably expressed genes and 3778 significant differentially expressed genes (DEGs). SCovid provides a user-friendly interface for browsing, searching, visualizing and downloading all detailed information.


Asunto(s)
COVID-19/patología , Bases de Datos Factuales , Análisis de la Célula Individual , COVID-19/genética , Humanos , Transcriptoma , Interfaz Usuario-Computador
4.
Nucleic Acids Res ; 50(D1): D795-D800, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34500458

RESUMEN

gutMGene (http://bio-annotation.cn/gutmgene), a manually curated database, aims at providing a comprehensive resource of target genes of gut microbes and microbial metabolites in humans and mice. Metagenomic sequencing of fecal samples has identified 3.3 × 106 non-redundant microbial genes from up to 1500 different species. One of the contributions of gut microbiota to host biology is the circulating pool of bacterially derived small-molecule metabolites. It has been estimated that 10% of metabolites found in mammalian blood are derived from the gut microbiota, where they can produce systemic effects on the host through activating or inhibiting gene expression. The current version of gutMGene documents 1331 curated relationships between 332 gut microbes, 207 microbial metabolites and 223 genes in humans, and 2349 curated relationships between 209 gut microbes, 149 microbial metabolites and 544 genes in mice. Each entry in the gutMGene contains detailed information on a relationship between gut microbe, microbial metabolite and target gene, a brief description of the relationship, experiment technology and platform, literature reference and so on. gutMGene provides a user-friendly interface to browse and retrieve each entry using gut microbes, disorders and intervention measures. It also offers the option to download all the entries and submit new experimentally validated associations.


Asunto(s)
Bacterias/genética , Bases de Datos Genéticas , Metaboloma , Metagenoma , Microbiota/genética , Programas Informáticos , Animales , Bacterias/clasificación , Bacterias/metabolismo , Heces/microbiología , Microbioma Gastrointestinal/genética , Humanos , Internet , Redes y Vías Metabólicas/genética , Ratones , Filogenia , ARN Ribosómico 16S/genética
5.
Hum Genet ; 142(11): 1543-1560, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37755483

RESUMEN

Comprehending the molecular basis of quantitative genetic variation is a principal goal for complex diseases or traits. Molecular quantitative trait loci (molQTLs) have made it possible to investigate the effects of genetic variants hiding behind large-scale omics data. A deeper understanding of molQTL is urgently required in light of the multi-dimensionalization of omics data to more fully elucidate the pertinent biological mechanisms. Herein, we reviewed molQTLs with the corresponding resource from the omics perspective and further discussed the integrative strategy of GWAS-molQTL to infer their causal effects. Subsequently, we described the opportunities and challenges encountered by molQTL. The case studies showed that molQTL is essential for complex diseases and traits, whether single- or multi-omics QTLs. Overall, we highlighted the functional significance of genetic variants to employ the discovery of molQTL in complex diseases and traits.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Humanos , Herencia Multifactorial , Fenotipo , Transcriptoma
6.
Brief Bioinform ; 22(2): 1442-1450, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33580783

RESUMEN

Since the first report of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019, the COVID-19 pandemic has spread rapidly worldwide. Due to the limited virus strains, few key mutations that would be very important with the evolutionary trends of virus genome were observed in early studies. Here, we downloaded 1809 sequence data of SARS-CoV-2 strains from GISAID before April 2020 to identify mutations and functional alterations caused by these mutations. Totally, we identified 1017 nonsynonymous and 512 synonymous mutations with alignment to reference genome NC_045512, none of which were observed in the receptor-binding domain (RBD) of the spike protein. On average, each of the strains could have about 1.75 new mutations each month. The current mutations may have few impacts on antibodies. Although it shows the purifying selection in whole-genome, ORF3a, ORF8 and ORF10 were under positive selection. Only 36 mutations occurred in 1% and more virus strains were further analyzed to reveal linkage disequilibrium (LD) variants and dominant mutations. As a result, we observed five dominant mutations involving three nonsynonymous mutations C28144T, C14408T and A23403G and two synonymous mutations T8782C, and C3037T. These five mutations occurred in almost all strains in April 2020. Besides, we also observed two potential dominant nonsynonymous mutations C1059T and G25563T, which occurred in most of the strains in April 2020. Further functional analysis shows that these mutations decreased protein stability largely, which could lead to a significant reduction of virus virulence. In addition, the A23403G mutation increases the spike-ACE2 interaction and finally leads to the enhancement of its infectivity. All of these proved that the evolution of SARS-CoV-2 is toward the enhancement of infectivity and reduction of virulence.


Asunto(s)
Evolución Biológica , Mutación , SARS-CoV-2/genética , COVID-19/virología , Humanos , Desequilibrio de Ligamiento , Sistemas de Lectura Abierta , SARS-CoV-2/patogenicidad , Virulencia/genética
7.
Nucleic Acids Res ; 48(D1): D554-D560, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31584099

RESUMEN

gutMDisorder (http://bio-annotation.cn/gutMDisorder), a manually curated database, aims at providing a comprehensive resource of dysbiosis of the gut microbiota in disorders and interventions. Alterations in the composition of the gut microbial community play crucial roles in the development of chronic disorders. And the beneficial effects of drugs, foods and other intervention measures on disorders could be microbially mediated. The current version of gutMDisorder documents 2263 curated associations between 579 gut microbes and 123 disorders or 77 intervention measures in Human, and 930 curated associations between 273 gut microbes and 33 disorders or 151 intervention measures in Mouse. Each entry in the gutMDisorder contains detailed information on an association, including an intestinal microbe, a disorder name, intervention measures, experimental technology and platform, characteristic of samples, web sites for downloading the sequencing data, a brief description of the association, a literature reference, and so on. gutMDisorder provides a user-friendly interface to browse, retrieve each entry using gut microbes, disorders, and intervention measures. It also offers pages for downloading all the entries and submitting new experimentally validated associations.


Asunto(s)
Bases de Datos Genéticas , Bases de Datos Farmacéuticas , Disbiosis/microbiología , Microbioma Gastrointestinal , Programas Informáticos , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/patogenicidad , Disbiosis/tratamiento farmacológico , Disbiosis/genética , Genes Bacterianos , Humanos , Metagenoma , Ratones
9.
Comput Biol Med ; 168: 107721, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38016374

RESUMEN

OBJECTIVE: Few symptoms persist for a long time after patients recover from COVID-19, called "long COVID". We explored the potential microbial risk factors for COVID-19 for a deeper understanding and assistance in the follow-up treatment of these sequelae. METHODS: Microbiome re-annotation was performed using whole blood RNA-Seq data collected from recovered COVID-19 patients and healthy controls at multiple time points. Subsequently, a series of downstream analyses were conducted to reveal the microbial characteristics of patients who recovered from SARS-CoV-2 infection. RESULTS: The blood microbiome at 12 weeks post-infection was most evidently disturbed, including an increasing ratio of Bacillota/Bacteroidota and a higher microbial alpha diversity. In addition, a group of pathogenic microbes at 12 weeks post-infection were identified, including Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa, which were positively associated with host genes involved in immune regulatory and olfactory transduction pathways. Several microbes, such as Streptococcus pneumoniae were associated with infiltrating immune cells, such as M2 macrophages. CONCLUSION: This study provides insights into the relationship between the blood microbiome and COVID-19 sequelae. Several pathogenic microbes were enriched in recovered COVID-19 patients and thus affected host genes participating in the immune and olfactory transduction pathways, which play critical roles in COVID-19 sequelae.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Progresión de la Enfermedad , Macrófagos , RNA-Seq
10.
Virus Res ; 342: 199341, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38403000

RESUMEN

Genome-wide association study (GWAS) analysis has exposed that genetic factors play important roles in COVID-19. Whereas a deeper understanding of the underlying mechanism of COVID-19 was hindered by the lack of expression of quantitative trait loci (eQTL) data specific for disease. To this end, we identified COVID-19-specific cis-eQTLs by integrating nucleotide sequence variations and RNA-Seq data from COVID-19 samples. These identified eQTLs have different regulatory effect on genes between patients and controls, indicating that SARS-CoV-2 infection may cause alterations in the human body's internal environment. Individuals with the TT genotype in the rs1128320 region seemed more susceptible to SARS-CoV-2 infection and developed into severe COVID-19 due to the abnormal expression of IFITM1. We subsequently discovered potential causal genes, of the result, a total of 48 genes from six tissues were identified. siRNA-mediated depletion assays in SARS-CoV-2 infection proved that 14 causal genes were directly associated with SARS-CoV-2 infection. These results enriched existing research on COVID-19 causal genes and provided a new sight in the mechanism exploration for COVID-19.


Asunto(s)
COVID-19 , Estudio de Asociación del Genoma Completo , Humanos , SARS-CoV-2/genética , ARN Interferente Pequeño , RNA-Seq
11.
Curr Med Chem ; 29(5): 837-848, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34348605

RESUMEN

Chemotherapy is often the primary and most effective anticancer treatment; however, drug resistance remains a major obstacle to it being curative. Recent studies have demonstrated that non-coding RNAs (ncRNAs), especially microRNAs and long non-coding RNAs, are involved in drug resistance of tumor cells in many ways, such as modulation of apoptosis, drug efflux and metabolism, epithelial-to-mesenchymal transition, DNA repair, and cell cycle progression. Exploring the relationships between ncRNAs and drug resistance will not only contribute to our understanding of the mechanisms of drug resistance and provide ncRNA biomarkers of chemoresistance, but will also help realize personalized anticancer treatment regimens. Due to the high cost and low efficiency of biological experimentation, many researchers have opted to use computational methods to identify ncRNA biomarkers associated with drug resistance. In this review, we summarize recent discoveries related to ncRNA-mediated drug resistance and highlight the computational methods and resources available for ncRNA biomarkers involved in chemoresistance.


Asunto(s)
MicroARNs , Neoplasias , ARN Largo no Codificante , Biomarcadores , Resistencia a Antineoplásicos/genética , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , ARN Largo no Codificante/genética , ARN no Traducido/genética , ARN no Traducido/metabolismo
12.
Brief Funct Genomics ; 21(6): 423-432, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36281737

RESUMEN

The elevated levels of inflammatory cytokines have attracted much attention during the treatment of COVID-19 patients. The conclusions of current observational studies are often controversial in terms of the causal effects of COVID-19 on various cytokines because of the confounding factors involving underlying diseases. To resolve this problem, we conducted a Mendelian randomization analysis by integrating the GWAS data of COVID-19 and 41 cytokines. As a result, the levels of 2 cytokines were identified to be promoted by COVID-19 and had unsignificant pleiotropy. In comparison, the levels of 10 cytokines were found to be inhibited and had unsignificant pleiotropy. Among down-regulated cytokines, CCL2, CCL3 and CCL7 were members of CC chemokine family. We then explored the potential molecular mechanism for a significant causal association at a single cell resolution based on single-cell RNA data, and discovered the suppression of CCL3 and the inhibition of CCL3-CCR1 interaction in classical monocytes (CMs) of COVID-19 patients. Our findings may indicate that the capability of COVID-19 in decreasing the chemotaxis of lymphocytes by inhibiting the CCL3-CCR1 interaction in CMs.


Asunto(s)
COVID-19 , Citocinas , Humanos , Análisis de la Aleatorización Mendeliana , COVID-19/genética , Análisis de Secuencia de ARN , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple/genética
13.
Front Microbiol ; 12: 685549, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34326821

RESUMEN

Many microbes are parasitic within the human body, engaging in various physiological processes and playing an important role in human diseases. The discovery of new microbe-disease associations aids our understanding of disease pathogenesis. Computational methods can be applied in such investigations, thereby avoiding the time-consuming and laborious nature of experimental methods. In this study, we constructed a comprehensive microbe-disease network by integrating known microbe-disease associations from three large-scale databases (Peryton, Disbiome, and gutMDisorder), and extended the random walk with restart to the network for prioritizing unknown microbe-disease associations. The area under the curve values of the leave-one-out cross-validation and the fivefold cross-validation exceeded 0.9370 and 0.9366, respectively, indicating the high performance of this method. Despite being widely studied diseases, in case studies of inflammatory bowel disease, asthma, and obesity, some prioritized disease-related microbes were validated by recent literature. This suggested that our method is effective at prioritizing novel disease-related microbes and may offer further insight into disease pathogenesis.

14.
Brief Funct Genomics ; 20(1): 42-60, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33554248

RESUMEN

Gut microbes have attracted much more attentions in the recent decade since their essential roles in the development of metabolic diseases, cancer and neurological diseases. Considerable evidence indicates that the metabolism of gut microbes exert influences on intestinal homeostasis and human diseases. Here, we first reviewed two mainstream sequencing technologies involving 16s rRNA sequencing and metagenomic sequencing for gut microbes, and data analysis methods assessing alpha and beta diversity. Next, we introduced some observational studies reflecting that many factors, such as lifestyle and intake of diets, drugs, contribute to gut microbes' quantity and diversity. Then, metabolites produced by gut microbes were presented to understand that gut microbes exert on host homeostasis in the intestinal epithelium and immune system. Finally, we focused on the molecular mechanism of gut microbes on the occurrence and development of several common diseases. In-depth knowledge of the relationship among interventions, gut microbes and diseases might provide new insights in to disease prevention and treatment.


Asunto(s)
Microbioma Gastrointestinal , Homeostasis , Humanos , ARN Ribosómico 16S/genética
15.
Front Microbiol ; 12: 680101, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34295318

RESUMEN

Acute myocardial infarction (AMI) continues as the main cause of morbidity and mortality worldwide. Interestingly, emerging evidence highlights the role of gut microbiota in regulating the pathogenesis of coronary heart disease, but few studies have systematically assessed the alterations and influence of gut microbiota in AMI patients. As one approach to address this deficiency, in this study the composition of fecal microflora was determined from Chinese AMI patients and links between gut microflora and clinical features and functional pathways of AMI were assessed. Fecal samples from 30 AMI patients and 30 healthy controls were collected to identify the gut microbiota composition and the alterations using bacterial 16S rRNA gene sequencing. We found that gut microflora in AMI patients contained a lower abundance of the phylum Firmicutes and a slightly higher abundance of the phylum Bacteroidetes compared to the healthy controls. Chao1 (P = 0.0472) and PD-whole-tree (P = 0.0426) indices were significantly lower in the AMI versus control group. The AMI group was characterized by higher levels of the genera Megasphaera, Butyricimonas, Acidaminococcus, and Desulfovibrio, and lower levels of Tyzzerella 3, Dialister, [Eubacterium] ventriosum group, Pseudobutyrivibrio, and Lachnospiraceae ND3007 group as compared to that in the healthy controls (P < 0.05). The common metabolites of these genera are mostly short-chain fatty acids, which reveals that the gut flora is most likely to affect the occurrence and development of AMI through the short-chain fatty acid pathway. In addition, our results provide the first evidence revealing remarkable differences in fecal microflora among subgroups of AMI patients, including the STEMI vs. NSTEMI, IRA-LAD vs. IRA-Non-LAD and Multiple (≥2 coronary stenosis) vs. Single coronary stenosis groups. Several gut microflora were also correlated with clinically significant characteristics of AMI patients, including LVEDD, LVEF, serum TnI and NT-proBNP, Syntax score, counts of leukocytes, neutrophils and monocytes, and fasting serum glucose levels. Taken together, the data generated enables the prediction of several functional pathways as based on the fecal microfloral composition of AMI patients. Such information may enhance our comprehension of AMI pathogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA