Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
World J Gastrointest Oncol ; 16(4): 1104-1118, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38660637

RESUMEN

Esophageal cancer (EC) is the seventh most common cancer worldwide, and esophageal squamous cell carcinoma (ESCC) accounts for the majority of cases of EC. To effectively diagnose and treat ESCC and improve patient prognosis, timely diagnosis in the initial phase of the illness is necessary. This article offers a detailed summary of the latest advancements and emerging technologies in the timely identification of ECs. Molecular biology and epigenetics approaches involve the use of molecular mechanisms combined with fluorescence quantitative polymerase chain reaction (qPCR), high-throughput sequencing technology (next-generation sequencing), and digital PCR technology to study endogenous or exogenous biomolecular changes in the human body and provide a decision-making basis for the diagnosis, treatment, and prognosis of diseases. The investigation of the microbiome is a swiftly progressing area in human cancer research, and microorganisms with complex functions are potential components of the tumor microenvironment. The intratumoral microbiota was also found to be connected to tumor progression. The application of endoscopy as a crucial technique for the early identification of ESCC has been essential, and with ongoing advancements in technology, endoscopy has continuously improved. With the advancement of artificial intelligence (AI) technology, the utilization of AI in the detection of gastrointestinal tumors has become increasingly prevalent. The implementation of AI can effectively resolve the discrepancies among observers, improve the detection rate, assist in predicting the depth of invasion and differentiation status, guide the pericancerous margins, and aid in a more accurate diagnosis of ESCC.

2.
Theranostics ; 14(11): 4278-4296, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113800

RESUMEN

Background: Ulcerative colitis (UC) is an intestinal inflammatory disease that is strongly associated with mitochondrial damage and dysfunction as well as mitophagy and lacks of satisfactory treatments. Hair follicle mesenchymal stem cell (HF-MSC)-derived exosomes owe benefit effectiveness on inflammatory therapies. Hypoxia-preconditioned HF-MSCs exhibit enhanced proliferation and migration abilities, and their exosomes exert stronger effects than normal exosomes. However, the therapeutic function of Hy-Exos in UC is unknown. Methods: The inflammation model was established with LPS-treated MODE-K cells, and the mouse UC model was established by dextran sulfate sodium (DSS) administration. The therapeutic effects of HF-MSC-derived exosomes (Exos) and hypoxia-preconditioned HF-MSC-derived exosomes (Hy-Exos) were compared in vitro and in vivo. Immunofluorescence staining and western blotting were used to explore the effects of Hy-Exos on mitochondrial function, mitochondrial fission and fusion and mitophagy. MiRNA sequencing analysis was applied to investigate the differences in components between Exos and Hy-Exos. Results: Hy-Exos had a better therapeutic effect on LPS-treated MODE-K cells and DSS-induced UC mice. Hy-Exos promoted colonic tight junction proteins expression, suppressed the oxidative stress response, and reduced UC-related inflammatory injury. Hy-Exos may exert these effects via miR-214-3p-mediated inhibition of the PI3K/AKT/mTOR signaling pathway, maintenance of mitochondrial dynamic stability, alleviation of mitochondrial dysfunction and enhancement of mitophagy. Conclusion: This study revealed a vital role for Hy-Exos in suppressing inflammatory progression in UC and suggested that miR-214-3p is a potential critical target for Hy-Exos in alleviating UC.


Asunto(s)
Colitis Ulcerosa , Modelos Animales de Enfermedad , Exosomas , Folículo Piloso , Células Madre Mesenquimatosas , Mitofagia , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Animales , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/terapia , Colitis Ulcerosa/patología , Células Madre Mesenquimatosas/metabolismo , Exosomas/metabolismo , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Folículo Piloso/metabolismo , Sulfato de Dextran , Masculino , Mitocondrias/metabolismo , Ratones Endogámicos C57BL , MicroARNs/metabolismo , MicroARNs/genética , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA