Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Breast Cancer Res ; 23(1): 116, 2021 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-34922602

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) is highly metastatic and lethal. Due to a lack of druggable targets for this disease, there are no effective therapies in the clinic. METHODS: We used TNBC cells and xenografted mice as models to explore triptonide-mediated inhibition of TNBC metastasis and tumor growth. Colony formation assay was used to quantify the tumorigenesis of TNBC cells. Wound-healing and cell trans-well assays were utilized to measure cell migration and invasion. Tube formation assay was applied to access tumor cell-mediated vasculogenic mimicry. Western blot, quantitative-PCR, immunofluorescence imaging, and immunohistochemical staining were used to measure the expression levels of various tumorigenic genes in TNBC cells. RESULTS: Here, we showed that triptonide, a small molecule from the traditional Chinese medicinal herb Tripterygium wilfordii Hook F, potently inhibited TNBC cell migration, invasion, and vasculogenic mimicry, and effectively suppressed TNBC tumor growth and lung metastasis in xenografted mice with no observable toxicity. Molecular mechanistic studies revealed that triptonide strongly triggered the degradation of master epithelial-mesenchymal transition (EMT)-inducing protein Twist1 through the lysosomal system and reduced Notch1 expression and NF-κB phosphorylation, which consequently diminished the expression of pro-metastatic and angiogenic genes N-cadherin, VE-cadherin, and vascular endothelial cell growth factor receptor 2 (VEGFR2). CONCLUSIONS: Triptonide effectively suppressed TNBC cell tumorigenesis, vasculogenic mimicry, and strongly inhibited the metastasis of TNBC via degradation of Twist1 and Notch1 oncoproteins, downregulation of metastatic and angiogenic gene expression, and reduction of NF-κB signaling pathway. Our findings provide a new strategy for treating highly lethal TNBC and offer a potential new drug candidate for combatting this aggressive disease.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Triterpenos , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Humanos , Ratones , Proteínas Nucleares/genética , Proteínas Oncogénicas , Receptor Notch1/genética , Receptor Notch1/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Triterpenos/farmacología , Triterpenos/uso terapéutico , Proteína 1 Relacionada con Twist/genética
2.
Nutr Metab Cardiovasc Dis ; 31(8): 2458-2470, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34090773

RESUMEN

BACKGROUND AND AIMS: Insufficient dietary fiber (DF) intake is associated with increased blood pressure (BP) and the mode of action is unclear. The intake of DF supplements by participants in previous interventional studies was still far below the amount recommended by the World Health Organization. Therefore, this study aims to explore the effect of supplementing relatively sufficient DF on BP and gut microbiota in patients with essential hypertension (HTN). METHODS AND RESULTS: Fifty participants who met the inclusion criteria were randomly divided into the DF group (n = 25) and control group (n = 25). All the participants received education on regular dietary guidance for HTN. In addition to dietary guidance, one bag of oat bran (30 g/d) supplement (containing DF 8.9 g) was delivered to the DF group. The office BP (oBP), 24 h ambulatory blood pressure, and gut microbiota were measured at baseline and third month. After intervention, the office systolic blood pressure (oSBP; P < 0.001) and office diastolic blood pressure (oDBP; P < 0.028) in the DF group were lower than those in the control group. Similarly, the changes in 24hmaxSBP (P = 0.002), 24hmaxDBP (P = 0.001), 24haveSBP (P < 0.007), and 24haveDBP (P = 0.008) were greater in the DF group than in the control group. The use of antihypertensive drugs in the DF group was significantly reduced (P = 0.021). The ß diversity, including Jaccard (P = 0.008) and Bray-Curtis distance (P = 0.004), showed significant differences (P < 0.05) between two groups by the third month. The changes of Bifidobacterium (P = 0.019) and Spirillum (P = 0.006) in the DF group were significant. CONCLUSIONS: Increased DF (oat bran) supplement improved BP, reduced the amount of antihypertensive drugs, and modulated the gut microbiota. TRIAL REGISTRATION NUMBER: ChiCTR1900024055.


Asunto(s)
Avena , Bifidobacterium/crecimiento & desarrollo , Presión Sanguínea , Fibras de la Dieta/administración & dosificación , Grano Comestible , Hipertensión Esencial/dietoterapia , Microbioma Gastrointestinal , Spirillum/crecimiento & desarrollo , Adulto , Monitoreo Ambulatorio de la Presión Arterial , China , Disbiosis , Hipertensión Esencial/diagnóstico , Hipertensión Esencial/microbiología , Hipertensión Esencial/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Nutritivo , Estudios Prospectivos , Factores de Tiempo , Resultado del Tratamiento
3.
Biochem Pharmacol ; 217: 115833, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37769714

RESUMEN

Pancreatic cancer is highly metastatic and lethal with an increasing incidence globally and a 5-year survival rate of only 8%. One of the factors contributing to the high mortality is the lack of effective drugs in the clinical setting. We speculated that effective compounds against pancreatic cancer exist in natural herbs and explored active small molecules among traditional Chinese medicinal herbs. The small molecule lycorine (MW: 323.77) derived from the herb Lycoris radiata inhibited pancreatic cancer cell growth with an IC50 value of 1 µM in a concentration-dependent manner. Lycorine markedly reduced pancreatic cancer cell viability, migration, invasion, neovascularization, and gemcitabine resistance. Additionally, lycorine effectively suppressed tumor growth in mouse xenograft models without obvious toxicity. Pharmacological studies revealed that the levels and half-life of Notch1 oncoprotein in the pancreatic cancer cells Panc-1 and Patu8988 were notably reduced. Moreover, the expression of the key vasculogenic genes Semaphorin 4D (Sema4D) and angiopoietin-2 (Ang-2) were also significantly inhibited by lycorine. Mechanistically, lycorine strongly triggered the degradation of Notch1 oncoprotein through the ubiquitin-proteasome system. In conclusion, lycorine effectively inhibits pancreatic cancer cell growth, migration, invasion, neovascularization, and gemcitabine resistance by inducing degradation of Notch1 oncoprotein and downregulating the key vasculogenic genes Sema4D and Ang-2. Our findings provide a new therapeutic candidate and treatment strategy against pancreatic cancer.


Asunto(s)
Alcaloides de Amaryllidaceae , Neoplasias Pancreáticas , Animales , Ratones , Humanos , Línea Celular Tumoral , Alcaloides de Amaryllidaceae/farmacología , Alcaloides de Amaryllidaceae/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Transformación Celular Neoplásica , Proteínas Oncogénicas , Proliferación Celular , Neoplasias Pancreáticas
4.
Cell Death Dis ; 14(4): 293, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37185462

RESUMEN

Expression of the long non-coding RNA (lncRNA) keratin-7 antisense (KRT7-AS) is downregulated in various types of cancer; however, the impact of KRT7-AS deficiency on tumorigenesis and apoptosis is enigmatic. We aim to explore the influence of KRT7-AS in carcinogenesis and apoptosis. We found that KRT7-AS was deficient in breast and lung cancers, and low levels of KRT7-AS were a poor prognostic factor in breast cancer. Cellular studies showed that silencing of KRT7-AS in lung cancer cells increased oncogenic Keratin-7 levels and enhanced tumorigenesis, but diminished cancer apoptosis of the cancer cells; by contrast, overexpression of KRT7-AS inhibited lung cancer cell tumorigenesis. Additionally, KRT7-AS sensitized cancer cells to the anti-cancer drug cisplatin, consequently enhancing cancer cell apoptosis. In vivo, KRT7-AS overexpression significantly suppressed tumor growth in xenograft mice, while silencing of KRT7-AS promoted tumor growth. Mechanistically, KRT7-AS reduced the levels of oncogenic Keratin-7 and significantly elevated amounts of the key tumor suppressor PTEN in cancer cells through directly binding to PTEN protein via its core nucleic acid motif GGCAAUGGCGG. This inhibited the ubiquitination-proteasomal degradation of PTEN protein, therefore elevating PTEN levels in cancer cells. We also found that KRT7-AS gene transcription was driven by the transcription factor RXRα; intriguingly, the small molecule berberine enhanced KRT7-AS expression, reduced tumorigenesis, and promoted apoptosis of cancer cells. Collectively, KRT7-AS functions as a new tumor suppressor and an apoptosis enhancer in lung and breast cancers, and we unraveled that the RXRα-KRT7-AS-PTEN signaling axis controls carcinogenesis and apoptosis. Our findings highlight a tumor suppressive role of endogenous KRT7-AS in cancers and an important effect the RXRα-KRT7-AS-PTEN axis on control of cancer cell tumorigenesis and apoptosis, and offer a new platform for developing novel therapeutics against cancers.


Asunto(s)
Neoplasias de la Mama , Neoplasias Pulmonares , ARN Largo no Codificante , Humanos , Animales , Ratones , Femenino , Neoplasias de la Mama/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Queratina-7/genética , Queratina-7/metabolismo , Línea Celular Tumoral , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Apoptosis/genética , Neoplasias Pulmonares/genética , Pulmón/metabolismo , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica
5.
Biochem Pharmacol ; 185: 114423, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33476574

RESUMEN

Metastatic melanoma has a very high mortality rate despite the availability of chemotherapy, radiotherapy, and immunotherapy; therefore, more effective therapeutics are needed. The Hippo pathway plays an inhibitory role in melanoma progression, but the tumor suppressors Salvador homolog-1 (SAV1) and large tumor suppressor 1 (LATS1) in this pathway are down-regulated in melanoma. As a result, the downstream oncogenic Yes-associated protein (YAP) is active, resulting in uncontrolled melanoma growth and metastasis. Therapeutics for remedying SAV1 and LATS1 deficiency in melanoma have not yet been reported in the literature. Here, we show that the small molecule triptonide (MW 358 Da) robustly suppressed melanoma cell tumorigenicity, migration, and invasion. Furthermore, triptonide markedly reduced tumor growth and melanoma lung metastasis in tumor-bearing mice with low toxicity. Molecular mechanistic studies revealed that triptonide promoted SAV1 and LATS1 expression, strongly activated the tumor-suppressive Hippo pathway, degraded oncogenic YAP via the lysosomal pathway, and reduced levels of tumorigenic microphthalmia-associated transcription factor (MITF) in melanoma cells. Triptonide also strongly inhibited activation of AKT, a SAV1-binding signaling protein. Collectively, our results conceptually demonstrate that induction of SAV1 and LATS1 expression and activation of the tumor-suppressive Hippo pathway by triptonide potently inhibits aggressive melanoma cell growth and metastasis. These findings suggest a new strategy for developing therapeutics to treat metastatic melanoma and highlight a novel drug candidate against aggressive melanoma.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Melanoma/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Triterpenos/uso terapéutico , Proteínas Supresoras de Tumor/metabolismo , Animales , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Femenino , Vía de Señalización Hippo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/prevención & control , Neoplasias Pulmonares/secundario , Melanoma/prevención & control , Ratones , Ratones Desnudos , Triterpenos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Nutrients ; 12(10)2020 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-33022991

RESUMEN

BACKGROUND: Alow carbohydrate diet (LCD) is more beneficial for the glycometabolism in type 2 diabetes (T2DM) and may be effective in reducing depression. Almond, which is a common nut, has been shown to effectively improve hyperglycemia and depression symptoms. This study aimed to determine the effect of an almond-based LCD (a-LCD) on depression and glycometabolism, as well as gut microbiota and fasting glucagon-like peptide 1 (GLP-1) in patients with T2DM. METHODS: This was a randomized controlled trial which compared an a-LCD with a low-fat diet (LFD). Forty-five participants with T2DM at a diabetes club and the Endocrine Division of the First and Second Affiliated Hospital of Soochow University between December 2018 to December 2019 completed each dietary intervention for 3 months, including 22 in the a-LCD group and 23 in the LFD group. The indicators for depression and biochemical indicators including glycosylated hemoglobin (HbA1c), gut microbiota, and GLP-1 concentration were assessed at the baseline and third month and compared between the two groups. RESULTS: A-LCD significantly improved depression and HbA1c (p <0.01). Meanwhile, a-LCD significantly increased the short chain fatty acid (SCFAs)-producing bacteria Roseburia, Ruminococcus and Eubacterium. The GLP-1 concentration in the a-LCD group was higher than that in the LFD group (p <0.05). CONCLUSIONS: A-LCD could exert a beneficial effect on depression and glycometabolism in patients with T2DM. We speculate that the role of a-LCD in improving depression in patients with T2DM may be associated with it stimulating the growth of SCFAs-producing bacteria, increasing SCFAs production and GPR43 activation, and further maintaining GLP-1 secretion. In future studies, the SCFAs and GPR43 activation should be further examined.


Asunto(s)
Depresión/dietoterapia , Diabetes Mellitus Tipo 2/dietoterapia , Dieta Baja en Carbohidratos/métodos , Microbioma Gastrointestinal/fisiología , Control Glucémico/métodos , Prunus dulcis , Anciano , Glucemia/metabolismo , Depresión/etiología , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/psicología , Ayuno/sangre , Heces/microbiología , Femenino , Péptido 1 Similar al Glucagón/sangre , Hemoglobina Glucada/metabolismo , Humanos , Masculino , Estudios Prospectivos , Resultado del Tratamiento
7.
Cell Death Dis ; 11(5): 387, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32439835

RESUMEN

Salvador homolog-1 (SAV1) is a tumor suppressor required for activation of the tumor-suppressive Hippo pathway and inhibition of tumorigenesis. SAV1 is defective in several cancer types. SAV1 deficiency in cells promotes tumorigenesis and cancer metastasis, and is closely associated with poor prognosis for cancer patients. However, investigation of therapeutic strategies to target SAV1 deficiency in cancer is lacking. Here we found that the small molecule lycorine notably increased SAV1 levels in lung cancer cells by inhibiting SAV1 degradation via a ubiquitin-lysosome system, and inducing phosphorylation and activation of the SAV1-interacting protein mammalian Ste20-like 1 (MST1). MST1 activation then caused phosphorylation, ubiquitination, and degradation of the oncogenic Yes-associated protein (YAP), therefore inhibiting YAP-activated transcription of oncogenic genes and tumorigenic AKT and NF-κB signal pathways. Strikingly, treating tumor-bearing xenograft mice with lycorine increased SAV1 levels, and strongly inhibited tumor growth, vasculogenic mimicry, and metastasis. This work indicates that correcting SAV1 deficiency in lung cancer cells is a new strategy for cancer therapy. Our findings provide a new platform for developing novel cancer therapeutics.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/fisiología , Neoplasias Pulmonares/metabolismo , Transducción de Señal/fisiología , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA