Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Mol Cancer ; 23(1): 55, 2024 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-38491348

RESUMEN

BACKGROUND: Long noncoding RNAs (lncRNAs) have emerged as key players in tumorigenesis and tumour progression. However, the biological functions and potential mechanisms of lncRNAs in colorectal cancer (CRC) are unclear. METHODS: The novel lncRNA POU6F2-AS1 was identified through bioinformatics analysis, and its expression in CRC patients was verified via qRT-PCR and FISH. In vitro and in vivo experiments, such as BODIPY staining, Oil Red O staining, triglyceride (TAG) assays, and liquid chromatography mass spectrometry (LC-MS) were subsequently performed with CRC specimens and cells to determine the clinical significance, and functional roles of POU6F2-AS1. Biotinylated RNA pull-down, RIP, Me-RIP, ChIP, and patient-derived organoid (PDO) culture assays were performed to confirm the underlying mechanism of POU6F2-AS1. RESULTS: The lncRNA POU6F2-AS1 is markedly upregulated in CRC and associated with adverse clinicopathological features and poor overall survival in CRC patients. Functionally, POU6F2-AS1 promotes the growth and lipogenesis of CRC cells both in vitro and in vivo. Mechanistically, METTL3-induced m6A modification is involved in the upregulation of POU6F2-AS1. Furthermore, upregulated POU6F2-AS1 could tether YBX1 to the FASN promoter to induce transcriptional activation, thus facilitating the growth and lipogenesis of CRC cells. CONCLUSIONS: Our data revealed that the upregulation of POU6F2-AS1 plays a critical role in CRC fatty acid metabolism and might provide a novel promising biomarker and therapeutic target for CRC.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Regulación hacia Arriba , Línea Celular Tumoral , Proliferación Celular/genética , MicroARNs/genética , Neoplasias Colorrectales/patología , Ácidos Grasos , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Factores del Dominio POU/genética , Factores del Dominio POU/metabolismo , Metiltransferasas/metabolismo , Acido Graso Sintasa Tipo I/genética , Acido Graso Sintasa Tipo I/metabolismo
2.
Small ; : e2311881, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38372502

RESUMEN

Shaping covalent organic frameworks (COFs) into macroscopic objects with robust mechanical properties and hierarchically porous structure is of great significance for practical applications but remains formidable and challenging. Herein, a general and scalable protocol is reported to prepare ultralight and robust pure COF fiber aerogels (FAGs), based on the epitaxial growth synergistic assembly (EGSA) strategy. Specifically, intertwined COF nanofibers (100-200 nm) are grown in situ on electrospinning polyacrylonitrile (PAN) microfibers (≈1.7 µm) containing urea-based linkers, followed by PAN removal via solvent extraction to obtain the hollow COF microfibers. The resultant COF FAGs possess ultralow density (14.1-15.5 mg cm-3 ) and hierarchical porosity that features both micro-, meso-, and macropores. Significantly, the unique interconnected structure composed of nanofibers and hollow microfibers endows the COF FAGs with unprecedented mechanical properties, which can fully recover at 50% strain and be compressed for 20 cycles with less than 5% stress degradation. Moreover, the aerogels exhibit excellent capacity for organic solvent absorption (e.g., chloroform uptake of >90 g g-1 ). This study opens new avenues for the design and fabrication of macroscopic COFs with excellent properties.

3.
Environ Sci Technol ; 58(2): 1399-1409, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38165309

RESUMEN

Graphene oxide (GO) membranes enabled by subnanosized diffusion channels are promising to separate small species in membrane distillation (MD). However, the challenge of effectively excluding small volatiles in MD persists due to the severe swelling and subsequent increase in GO interlamination spacing upon direct contact with the hot feed. To address this issue, we implemented a design in which a polymer is confined between the GO interlaminations, creating predominantly 2D nanochannels centered around 0.57 nm with an average membrane pore size of 0.30 nm. Compared to the virginal GO membrane, the polymer-intercalated GO membrane exhibits superior antiswelling performance, particularly at a high feed temperature of 60 °C. Remarkably, the modified membrane exhibited a high flux of approximately 52 L m-2 h-1 and rejection rates of about 100% for small ions and 98% for volatile phenol, with a temperature difference of 40 °C. Molecular dynamics simulations suggest that the sieving mechanisms for ions and volatiles are facilitated by the narrowed nanochannels within the polymer network situated between the 2D nanochannels of GO interlaminations. Concurrently, the unrestricted permeation of water molecules through the multinanochannel GO membrane encourages high-flux desalination of complex hypersaline wastewater.


Asunto(s)
Destilación , Grafito , Polímeros , Difusión , Agua
4.
Langmuir ; 39(48): 17366-17377, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37971405

RESUMEN

The urgent need to efficiently and rapidly decontaminate uranium contamination in aquatic environments underscores its significance for ecological preservation and environmental restoration. Herein, a series of titanium-doped zirconium-based metal-organic frameworks were meticulously synthesized through a stepwise process. The resultant hybrid bimetallic materials, denoted as NU-Zr-n%Ti, exhibited remarkable efficiency in eliminating uranium (U (VI)) from aqueous solution. Batch experiments were executed to comprehensively assess the adsorption capabilities of NU-Zr-n%Ti. Notably, the hybrid materials exhibited a substantial increase in adsorption capacity for U (VI) compared to the parent NU-1000 framework. Remarkably, the optimized NU-Zr-15%Ti displayed a noteworthy adsorption capacity (∼118 mg g-1) along with exceptionally rapid kinetics at pH 4.0, surpassing that of pristine NU-1000 by a factor of 10. This heightened selectivity for U (VI) persisted even when diverse ions exist. The dominant mechanisms driving this high adsorption capacity were identified as the robust electrostatic attraction between the negatively charged surface of NU-Zr-15%Ti and positively charged U (VI) species as well as surface complexation. Consequently, NU-Zr-15%Ti emerges as a promising contender for addressing uranium-laden wastewater treatment and disposal due to its favorable sequestration performance.

5.
Environ Sci Technol ; 57(19): 7612-7623, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37104662

RESUMEN

Hypersaline wastewater treatment using membrane distillation (MD) has gained significant attention due to its ability to completely reject nonvolatile substances. However, a critical limitation of current MD membranes is their inability to intercept volatile substances owing to their large membrane pores. Additionally, the strong interaction between volatile substances and MD membranes underwater tends to cause membrane wetting. To overcome these challenges, we developed a dual-layer thin film composite (TFC) Janus membrane through electrospinning and sequential interfacial polymerization of a polyamide (PA) layer and cross-linking a polyvinyl alcohol/polyacrylic acid (PP) layer. The resulting Janus membrane exhibited high flux (>27 L m-2 h-1), salt rejection of ∼100%, phenol rejection of ∼90%, and excellent resistance to wetting and fouling. The interlayered interface between the PA and PP layer allowed the sieve of volatile substances by limiting their dissolution-diffusion, with the increasing hydrogen bond network formation preventing their transport. In contrast, small water molecules with powerful dynamics were permeable through the TFC membrane. Both experimental and molecular dynamics simulation results elucidated the sieving mechanism. Our findings demonstrate that this type of TFC Janus membrane can serve as a novel strategy to design next-generation MD membranes against volatile and non-volatile contaminants, which can have significant implications in the treatment of complex hypersaline wastewater.


Asunto(s)
Destilación , Membranas Artificiales , Humectabilidad , Aguas Residuales , Agua , Nylons/química
6.
Small ; 18(8): e2104387, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34716658

RESUMEN

Metal-organic frameworks (MOFs) have potential applications in removing pollutants such as heavy metals, oils, and toxins from water. However, due to the intrinsic fragility of MOFs and their fine powder form, there are still technical barriers to their practical application such as blockage of pipes, difficulty in recovery, and potential environmental toxicity. Therefore, attention has focused on approaches to convert nanocrystalline MOFs into macroscopic materials to overcome these limitations. Recently, strategies for shaping MOFs into beads (0D), nanofibers (1D), membranes (2D), and gels/sponges (3D) with macrostructures are developed including direct mixing, in situ growth, or deposition of MOFs with polymers, cotton, foams or other porous substrates. In this review, successful strategies for the fabrication of macroscopic materials from MOFs and their applications in removing pollutants from water including adsorption, separation, and advanced oxidation processes, are discussed. The relationship between the macroscopic performance and the microstructure of materials, and how the range of 0D to 3D macroscopic materials can be used for water treatment are also outlined.


Asunto(s)
Contaminantes Ambientales , Estructuras Metalorgánicas , Metales Pesados , Purificación del Agua , Adsorción , Estructuras Metalorgánicas/química , Metales Pesados/química
7.
Environ Sci Technol ; 56(12): 8833-8843, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35618660

RESUMEN

Single oxygen-based advanced oxidation processes (1O2-AOPs) exhibit great prospects in selective degradation of organic pollutants. However, efficient production of 1O2 via tailored design of catalysts to achieve selective oxidation of contaminants remains challenging. Herein, we develop a simple strategy to regulate the components and coordination of Co-N-C catalysts at the atomic level by adjusting the Zn/Co ratio of bimetallic zeolitic imidazolate frameworks (ZnxCo1-ZIFs). Zn4Co1-C demonstrates 98% selective removal of phenol in the mixed phenol/benzoic acid (phenol/BA) solutions. Density functional theory calculations and experiments reveal that more active CoN4 sites are generated in Zn4Co1-C, which are beneficial to peroxymonosulfate activation to generate 1O2. Furthermore, the correlation between the origin of selectivity and well-defined catalysts is systematically investigated by the electron paramagnetic resonance test and quenching experiments. This work may provide novel insights into selective removal of target pollutants in a complicated water matrix.


Asunto(s)
Contaminantes Ambientales , Catálisis , Oxígeno , Peróxidos , Fenoles , Agua
8.
Environ Res ; 207: 112148, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34606843

RESUMEN

Development of efficient catalysts for peroxymonosulfate (PMS) activation and further understanding its mechanism on organic pollutants degradation is of significant importance for advanced oxidation processes (AOPs). Herein, hollow (Co, Mn)3O4 catalysts were synthesized by calcination of Co, Mn containing metal-organic frameworks (MOFs) and further used to evaluate the effectiveness of organic pollutants (Bisphenol A (BPA), atrazine (ATZ), and diethyl phthalate (DEP)) degradation by PMS activation. The PMS utilization efficiency in (Co, Mn)3O4/PMS system (36.4%) was estimated to be 28.0% and 43.8% higher than that of Co3O4/PMS and Mn5O8/PMS system, respectively. Notably, the metal leaching in (Co, Mn)3O4/PMS system was significantly suppressed. The utilization efficiency also reveals an inverse proportionality relationship with BPA mineralization but decreases with increasing initial pH value. A synergy between oxides of Co and Mn was perceived to enhance PMS utilization efficiency and BPA degradation. The results indicate enhanced catalytic performance with (Co, Mn)3O4 compared to Co3O4 derived from Co-MOF and other reported catalysts, with 99% of BPA degradation within 4 min. The oxidation mechanism was then proposed based on the electron paramagnetic resonance (EPR) and XPS results. Our findings might have contributed to designing heterogeneous catalysts for efficient PMS utilization in AOPs.


Asunto(s)
Contaminantes Ambientales , Cobalto , Nanotecnología , Óxidos , Peróxidos
9.
Environ Res ; 206: 112618, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-34954145

RESUMEN

Well dispersed nanocatalysts on porous substrate with macroscopic morphology are highly desired for the application of heterogeneous catalysis. Traditional fabrication process suffers from multiple steps for controlling the structure on nanocatalysts and matrix or both. Herein, we report a facile strategy for the synthesis of millimeter-sized hierarchical porous carbon beads (HPCBs) which containing well dispersed hollow-nano carbon boxes for peroxymonosulfate catalysis. Specially, the precursors of HPCBs were prepared by phase inversion method, which involving introduction of zeolitic imidazolate framework (ZIF-8) nanocubes into polyacrylonitrile (PAN) solutions followed by solidification of the mixture. After pyrolysis, nitrogen doped and hierarchical porous HPCBs with diameter of about 1.2 mm were obtained. The merits of our synthesis strategy lie in that synchronizes the hollow microstructure evolution with the shaping of ZIF-8 nanocubes into millimeter scale beads. Attribute to its special structure feature and the appropriate chemical composition, the resultant millimeter-sized HPCBs exhibit enhanced catalytic performance by activation of peroxymonosulfate (PMS) for tetracycline degradation. The degradation efficiency of TC is up to 85.1% within 120 min, which is 18% higher than that of ZIF8-Solid/PAN carbon bead (SPCBs). In addition, the possible decomposition pathways, main reactive oxygen species, and reasonable enhanced mechanism for the HPCBs/PMS system are systematically investigated by quenching experiments, electron paramagnetic resonance (EPR) and liquid chromatography-mass spectrometry (LC-MS). This work addresses the issue of easy aggregation and recycling of carbon materials in industrial productions and extends the prospects of carbon materials in engineering applications.


Asunto(s)
Carbono , Zeolitas , Resinas Acrílicas , Carbono/química , Catálisis , Peróxidos , Porosidad
10.
Molecules ; 27(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36296725

RESUMEN

In this work, polyacrylonitrile/aminated polymeric nanosphere (PAN/APN) nanofibers were prepared by electrospinning of monodispersed aminated polymeric nanospheres (APNs) for removal of Cr(VI) from aqueous solution. Characterization results showed that obtained PAN/APNs possessed nitrogen functionalization. Furthermore, the adsorption application results indicated that PAN/APN nanofibers exhibited a high adsorption capacity of 556 mg/g at 298 K for Cr(VI) removal. The kinetic data showed that the adsorption process fits the pseudo-second order. A thermodynamic study revealed that the adsorption of Cr(VI) was spontaneous and endothermic. The coexisting ions Na+, Ca2+, K+, Cl-, NO3- and PO43- had little influence on Cr(VI) adsorption, while SO42- in solution dramatically decreased the removal performance. In the investigation of the removal mechanism, relative results indicated that the adsorption behavior possibly involved electrostatic adsorption, redox reaction and chelation. PAN/APN nanofibers can detoxify Cr(VI) to Cr(III) and subsequently chelate Cr(III) on its surface. The unique structure and nitrogen functionalization of PAN/APN nanofibers make them novel and prospective candidates in heavy metal removal.


Asunto(s)
Metales Pesados , Nanofibras , Nanosferas , Contaminantes Químicos del Agua , Nanofibras/química , Contaminantes Químicos del Agua/química , Cromo/química , Adsorción , Cinética , Polímeros , Iones , Nitrógeno
11.
Environ Sci Technol ; 55(4): 2652-2661, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33337860

RESUMEN

Clean water production calls for highly efficient and less energy-intensive technologies. Herein, a novel concept of a sequential ultrafiltration-catalysis membrane is developed by loading Co3O4/C@SiO2 yolk-shell nanoreactors into the fingerlike channels of a polymeric ultrafiltration membrane. Such a sequenced structure design successfully integrates selective separation with peroxymonosulfate-based catalysis to prepare a functionalized molecular sieve membrane, which exhibits excellent decontamination performance toward multipollutants by filtering the water matrices containing humic acid (HA) and bisphenol A (BPA). In this study, 100% rejection of HA and 95% catalytic degradation of BPA were achieved under a low pressure of 0.14 MPa and an ultrahigh flux of 229 L m-2 h-1, corresponding to a retention time of 3.1 s. Notably, the removal performance of multiple pollutants essentially depends on the ordered arrangement of ultrafiltration and catalysis. Moreover, the flow-through process demonstrated significant enhancement of BPA degradation kinetics, which is 21.9 times higher than that of a conventional batch reactor. This study provides a novel strategy for excellent removal of multiple pollutants in water.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Purificación del Agua , Catálisis , Dióxido de Silicio , Ultrafiltración , Agua , Contaminantes Químicos del Agua/análisis
12.
Environ Res ; 201: 111500, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34147465

RESUMEN

MOFs-derived metal/carbon materials have been considered as promising candidates for the electrochemical detection of micropollutants. However, the aggregation of metal nanoparticles and structure collapse of precursor MOFs during pyrolysis significantly hamper the improvement on detecting performance. Herein, a dicyandiamide-assisted strategy is utilized to synthesize well-dispersed Cu/N-doped porous carbon nanoarchitecture (CuNC) for the electrochemical detection of acetaminophen (AP). The constructed CuNC sensor exhibits excellent electro-analytical performance for monitoring AP with linear range from 0.01 µM to 921.2 µM, and the low detection limit of 2.46 nM (S/N = 3). The improved performance of CuNC sensor is ascribed to the introduction of dicyandiamide, which can prevent HKUST-1 framework breakage and reduce the aggregation tendency of Cu, leading to the evenly distributed small Cu nanoparticles, abundant N species, hierarchical channel structure, and high conductivity carbon framework. These advantages endow predominant repeatability, stability, and selectivity of CuNC sensor. This strategy provided a novel approach to preparing MOFs-derived carbon nanoarchitectures with excellent electroanalysis performance to monitor micropollutants.


Asunto(s)
Acetaminofén , Carbono , Técnicas Electroquímicas , Guanidinas , Estructuras Metalorgánicas , Porosidad
13.
Environ Sci Technol ; 54(16): 10289-10300, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32614573

RESUMEN

Selective removal of organic pollutants from surface water with high efficiency is crucial in water purification. Here, yolk-shell Co/C nanoreactors (YSCCNs) are facilely synthesized via pyrolysis of controllably etched ZIF-67 by tannic acid, and their degradation performance on multiple pollutants is demonstrated. To present the structure-performance relationship between the designed nanocatalyst and the selective removal of organic pollutants, bisphenol A (BPA) was selected as the targeted pollutant with coexistence of humus acid (HA). For comparison, solid and hollow ZIF-67 derived Co/C nanoparticles denoted as SCCNs and HCCNs, were also tested. The results show that YSCCNs exhibit enhanced BPA degradation rate of 0.32 min-1, which is 23.1% and 45.4% higher than that of HCCNs and SCCNs in HA (10 ppm) system. The essential improvement can be ascribed to the synergetic effects from shell layer (size-exclusion) and core/shell (confinement effect). The degradation mechanism and pathway are further confirmed by radical quenching experiments and liquid chromatography-mass spectrograph (LC-MS), respectively. In addition, some influential factors, including reaction temperature, pH value, and peroxymonosulfate (PMS) dosage are investigated in detail. This work provides a possible way to selectively remove target contaminant from multiple pollutants in complex water system.


Asunto(s)
Contaminantes Ambientales , Estructuras Metalorgánicas , Purificación del Agua
14.
Environ Res ; 191: 110215, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32971079

RESUMEN

Nanofiltration (NF) is an advanced environmental technology in water treatment. To thin film nanocomposite (TFN) membrane, good compatibility between nanofillers and polyamide (PA) layer is the guarantee of remarkable performance. Herein, tannic acid (TA) was employed as modifier of UIO-66-NH2 prior to the interfacial polymerization (IP). With TA modification, more interaction can be formed so that the compatibility between nanofillers and PA layer can be promoted at the molecular level. Characterizations demonstrated the coating of TA on UIO-66-NH2, together with successful introducing of nanofillers in TFN membranes. Compared to pristine thin film composite (TFC) membrane, both UIO-incorporated TFN (TFN-U) and TA modified UIO-incorporated TFN (TFN-TU) membranes showed higher permeance (111.2% and 93% enhancement, respectively). However, under the same nanofillers dose, TFN-TU exhibited slightly lower permeance and higher rejection than TFN-U since the bridging effect of TA healed non-selective voids in skin layer. With the increasing of nanofiller dose in IP, TFN-TU remained reasonable selectivity while TFN-U failed to. Moreover, TFN-TU showed better anti-fouling property due to TA modification. Introducing TA modified MOFs into IP can serve as an ingenious strategy for TFN membrane to achieve high-quality environmental applications.


Asunto(s)
Estructuras Metalorgánicas , Nanocompuestos , Purificación del Agua , Nylons , Taninos
15.
J Environ Manage ; 215: 123-131, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29567552

RESUMEN

In this work, nitrogen-enriched carbon sheet (NECS) was successfully fabricated by using sodium gluconate as a carbon source via melamine assisted chemical blowing approach. The obtained material exhibits sheet-like morphology with ultra-thin thickness and has a high specific surface area of 604 m2g-1 and high nitrogen contents of 11.2 wt%. The NECS showed an excellent adsorption performance towards the removal of anionic dye Methyl blue (a-Mb). The adsorption of a-Mb onto NECS better fitted the Langmuir isotherm model with the highest adsorption capacity of 847 mg g-1. Interestingly, the NECS showed a pH-sensitive behavior towards the adsorption efficiency of a-Mb dye in which the adsorption capacity abruptly increased from 34 to 701 mg g-1 when the pH of the solution was decreased from 10 to 2. Furthermore, the adsorbed materials can be easily regenerated without obvious efficiency loss over a five adsorption-desorption cycles.


Asunto(s)
Bencenosulfonatos/química , Carbono , Contaminantes Químicos del Agua/química , Adsorción , Bencenosulfonatos/aislamiento & purificación , Cinética , Azul de Metileno , Nitrógeno , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua
16.
Sci Total Environ ; 912: 169035, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38056677

RESUMEN

Adsorption is one of the most effective methods for ecotoxic antibiotics removal, while developing high-performance adsorbents with excellent adsorption capacity is indispensable. As the unavoidable by-product of wastewater, sewage sludge has dual properties of pollution and resources. In this study, dyeing sludge waste was converted to biochar by KOH activation and pyrolysis, and used as an efficient adsorbent for aqueous antibiotics removal. The optimized dyeing sludge-derived biochar (KSC-8) has excellent specific surface area (1178.4 m2/g) and the adsorption capacity for tetracycline (TC) could reach up to 1081.3 mg/g, which is four and five times higher than those without activation, respectively. The PSO (pseudo-second-order) kinetic model and the Langmuir isotherm model fitted better to the experimental data. The obtained KSC-8 has stabilized adsorption capacity for long-term fixed-bed experiments, and maintained 86.35% TC removal efficiency after five adsorption-regeneration cycles. The adsorption mechanism involves electrostatic attraction, hydrogen bonding, π-π interactions and pore filling. This work is a green and eco-friendly way as converting the waste to treat waste in aiming of simultaneous removal of antibiotics and resource recovery of dyeing sludge.


Asunto(s)
Antibacterianos , Contaminantes Químicos del Agua , Aguas del Alcantarillado , Colorantes , Agua , Tetraciclina , Carbón Orgánico , Adsorción , Cinética , Contaminantes Químicos del Agua/análisis
17.
J Colloid Interface Sci ; 662: 545-554, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38364479

RESUMEN

The desalination performance of thin film nanocomposite (TFN) membranes is significantly influenced by the nature of nanofillers and the structure of the polyamide (PA) layer. Herein, a micelles regulated interfacial polymerization (MRIP) strategy is reported for the preparation of TFN membranes with enhanced nanofiltration (NF) performance. Specially, stable and ultrafine micelles, synthesized from the poly(ethylene oxide)-b-poly(4-vinyl pyridine)-b-polystyrene (PEO-PVP-PS) triblock copolymers, were utilized as regulators in the aqueous phase during the interfacial polymerization (IP) process. TFN membranes were fabricated with varying concentrations of micelles to improve their properties and performances. The structure of the PA layer was further regulated by modulating the content of trimesoyl chloride (TMC), which significantly enhances the performance of the TFN membrane with micelles. Attributable to the homogeneously dispersed micelles and the modified PA layer, the optimized membrane denoted as TFN-2-0.3 exhibits an improved separation performance of 20.7 L m-2h-1 bar-1 and 99.3 % Na2SO4 rejection, demonstrating nearly twice the permeance and 2.7 % higher rejection than that of the original control membrane, respectively. The mechanism of this MRIP strategy was investigated through the diffusion experiments of piperazine (PIP) and interfacial tension tests. The incorporated micelles effectively lower the interfacial tension, promote the diffusion of PIP and accelerate the IP reaction, resulting in a denser and thinner PA layer. Collectively, these findings demonstrate that TFN membranes with micelles exhibit increased roughness, enhanced hydrophilicity, superior rejection to divalent salts, and better acid-base resistance, highlighting their potential applications in the design of TFN membranes.

18.
Chemosphere ; 355: 141775, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522676

RESUMEN

The catalyst's composition and rationally designed structure is significantly interlinked with its performance for wastewater remediation. Here, a novel hollow cobalt phosphides/carbon (HCoP/C) as an efficient catalyst for activating peroxymonosulfate (PMS) was prepared. The ZIF-67 was synthesized first, followed by phytic acid (PA) etching and then heat treatment was used to get HCoP/C. The PA was used as an etching agent and a source of phosphorus to prepare HCoP/C. To analyze catalytic performance, another solid cobalt phosphides/carbon (SCoP/C) catalyst was prepared for comparison. In contrast to SCoP/C, the HCoP/C exhibited higher catalytic efficiency when used to activate PMS to degrade Bisphenol A (BPA). The results showed that about 98 % of targeted pollutant BPA was removed from the system in 6 min with a rate constant of 0.78 min-1, which was 4 times higher than the solid structure catalyst. The higher catalytic performance of HCoP/C is attributed to its hollow structure. In the study, other parameters such as BPA concentration, temperature, pH, and different catalyst amount were also tested. Moreover, the electron paramagnetic resonance (EPR) and radical quenching analysis confirmed that sulfate radicals were dominant in the HCoP/C/PMS system.


Asunto(s)
Compuestos de Bencidrilo , Carbono , Estructuras Metalorgánicas , Fenoles , Carbono/química , Ácido Fítico , Peróxidos/química , Cobalto/química
19.
Sci Total Environ ; 915: 170183, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38246367

RESUMEN

Converting industrial sludge into catalytic materials for water purification is a promising approach to simultaneously realize effective disposal of sludge and resource of water. However, manipulating the high efficiency remains a huge challenge due to the difficulty in the active sites control of the sludge. Herein, we proposed a constitutive modulation strategy by the combination of hydrothermal and pyrolysis (HTP) for the fabrication of defects-assistant Fe containing sludge-derived carbon catalysts on upgrading performance in peroxymonosulfate (PMS) activation for pollutant degradation. Adjustable defects on dyeing sludge-derived carbon catalysts (DSCC) were achieved by introducing oxygen or nitrogen functional precursors (hydroquinone or p-phenylenediamine) during hydrothermal processes and by further pyrolysis, where O was detrimental while N was beneficial to defect generation. Compared to the DSCC with less defects (DHSC-O), the defect-rich sample (DHSC-2N) exhibited superior catalytic performance of PMS activation for bisphenol A (BPA) elimination (k = 0.45 min-1, 2.52 times of DHSC-O), as well as 81.4% total organic carbon (TOC) removal. Meanwhile, the degradation capacity was verified in wide pH range (2.1-8.1) and various aqueous matrices, reflecting the excellent adaptability and anti-interference performance. Furthermore, the continuous-flow experiments on industrial wastewater showed synchronous BPA and chemical oxygen demand (COD) removal, implying great potential for practical application. Solid electron paramagnetic resonance (EPR) and 57Fe Mösssbauer spectra analysis indicated that the defects acted as secondary active sites for Fe sites, which were beneficial to accelerating the electron transfer process. The only Fe active sites preferred the radical pathway. The controllable reaction tendency provides possibilities for the on-demand design of sludge-based catalysts to meet the requirements of practical wastewater treatment under Fenton-like reaction.

20.
J Colloid Interface Sci ; 661: 358-365, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38301472

RESUMEN

Rational design of high-performance electrode materials is crucial for enhancing desalination performance of capacitive deionization (CDI). Here, ultrathin nitrogen-doped carbon/Ti3C2Tx-TiN (NC/MX-TiN) heterostructure was developed by pyrolyzing zeolite imidazolate framework-8 (ZIF-8) nanoparticles sandwiched MXene (ZSM), which were formed by assembling ultrafine ZIF-8 nanoparticles with size of 20 nm on both sides of MXene nanosheets. The introduction of ultrasmall ZIF-8 particles allowed for in situ nitridation of the MXene during pyrolysis, forming consecutive TiN layers tightly connected to the internal MXene. The two-dimensional (2D) heterostructure exhibited remarkable properties, including high specific surface area and excellent conductivity. Additionally, the resulting TiN demonstrated exceptional redox capability, which significantly enhanced the performance of CDI and ensured cycling stability. Benefiting from these advantages, the NC/MX-TiN exhibited a maximum adsorption capacity of 45.6 mg g-1 and a steady cycling performance in oxygenated saline water over 50 cycles. This work explores the rational design and construction of MXene-based 2D heterostructure and broadens new horizons for the development of novel CDI electrode materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA