Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nano Lett ; 24(28): 8580-8586, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38967330

RESUMEN

By using low-temperature scanning tunneling microscopy and spectroscopy (STM/STS), we observe in-gap states induced by Andreev tunneling through a single impurity state in a low carrier density superconductor (NaAlSi). The energy-symmetric in-gap states appear when the impurity state is located within the superconducting gap. In-gap states can cross the Fermi level, and they show X-shaped spatial variation. We interpret the in-gap states as a consequence of the Andreev tunneling through the impurity state, which involves the formation or breakup of a Cooper pair. Due to the low carrier density in NaAlSi, the in-gap state is tunable by controlling the STM tip-sample distance. Under strong external magnetic fields, the impurity state shows Zeeman splitting when it is located near the Fermi level. Our findings not only demonstrate the Andreev tunneling involving single electronic state but also provide new insights for understanding the spatially dependent in-gap states in low carrier density superconductors.

2.
J Am Chem Soc ; 146(20): 13797-13804, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38722223

RESUMEN

Hydrides are promising candidates for achieving room-temperature superconductivity, but a formidable challenge remains in reducing the stabilization pressure below a megabar. In this study, we successfully synthesized a ternary lanthanum borohydride by introducing the nonmetallic element B into the La-H system, forming robust B-H covalent bonds that lower the pressure required to stabilize the superconducting phase. Electrical transport measurements confirm the presence of superconductivity with a critical temperature (Tc) of up to 106 K at 90 GPa, as evidenced by zero resistance and Tc shift under an external magnetic field. X-ray diffraction and transport measurements identify the superconducting compound as LaB2H8, a nonclathrate hydride, whose crystal structure remains stable at pressures as low as ∼ half megabar (59 GPa). Stabilizing superconductive stoichiometric LaB2H8 in a submegabar pressure regime marks a substantial advancement in the quest for high-Tc superconductivity in polynary hydrides, bringing us closer to the ambient pressure conditions.

3.
Nano Lett ; 23(7): 2958-2963, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37011415

RESUMEN

Here we use low-temperature and variable-temperature scanning tunneling microscopy to study the pnictide superconductor, Ba1-xSrxNi2As2. In the low-temperature phase (triclinic phase) of BaNi2As2, we observe the unidirectional charge density wave (CDW) with Q = 1/3 on both the Ba and NiAs surfaces. On the NiAs surface of the triclinic BaNi2As2, there are structural-modulation-induced chain-like superstructures with distinct periodicities. In the high-temperature phase (tetragonal phase) of BaNi2As2, the NiAs surface appears as the periodic 1 × 2 superstructure. Interestingly, in the triclinic phase of Ba0.5Sr0.5Ni2As2, the unidirectional CDW is suppressed on both the Ba/Sr and NiAs surfaces, and the Sr substitution stabilizes the periodic 1 × 2 superstructure on the NiAs surface, which enhance the superconductivity in Ba0.5Sr0.5Ni2As2. Our results provide important microscopic insights for the interplay among the unidirectional CDW, structural modulation, and superconductivity in this class of pnictide superconductors.

4.
Anal Chem ; 95(31): 11603-11612, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37493263

RESUMEN

Large-scale metabolite annotation is a bottleneck in untargeted metabolomics. Here, we present a structure-guided molecular network strategy (SGMNS) for deep annotation of untargeted ultra-performance liquid chromatography-high resolution mass spectrometry (MS) metabolomics data. Different from the current network-based metabolite annotation method, SGMNS is based on a global connectivity molecular network (GCMN), which was constructed by molecular fingerprint similarity of chemical structures in metabolome databases. Neighbor metabolites with similar structures in GCMN are expected to produce similar spectra. Network annotation propagation of SGMNS is performed using known metabolites as seeds. The experimental MS/MS spectra of seeds are assigned to corresponding neighbor metabolites in GCMN as their "pseudo" spectra; the propagation is done by searching predicted retention times, MS1, and "pseudo" spectra against metabolite features in untargeted metabolomics data. Then, the annotated metabolite features were used as new seeds for annotation propagation again. Performance evaluation of SGMNS showed its unique advantages for metabolome annotation. The developed method was applied to annotate six typical biological samples; a total of 701, 1557, 1147, 1095, 1237, and 2041 metabolites were annotated from the cell, feces, plasma (NIST SRM 1950), tissue, urine, and their pooled sample, respectively, and the annotation accuracy was >83% with RSD <2%. The results show that SGMNS fully exploits the chemical space of the existing metabolomes for metabolite deep annotation and overcomes the shortcoming of insufficient reference MS/MS spectra.


Asunto(s)
Curaduría de Datos , Espectrometría de Masas en Tándem , Metabolómica/métodos , Metaboloma , Cromatografía Liquida
5.
Phys Rev Lett ; 131(11): 116501, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37774284

RESUMEN

Here we report a combined study of low-temperature scanning tunneling microscopy and dynamical mean-field theory on PdCrO_{2}, a delafossite metal with an antiferromagnetic order below ∼37.5 K. First, on the CrO_{2}-terminated polar surface we detect a gaplike feature both below and above the Néel temperature. The dynamical mean-field theory calculations indicate that this gap is opened due to the strong correlations of Cr-3d electrons, suggesting the hidden Mott nature of the gap. Then, we observe two kinds of Pd-terminated polar surfaces. One is a well-ordered Pd surface with the Fermi-surface-nesting-induced incommensurate charge modulation, while the other one is a reconstructed Pd surface with the individual nanoscale nonperiodic domain structures. On the well-ordered Pd surface, the interference between the incommensurate charge modulation and the atomic lattice forms the periodic moiré pattern. Our results provide important microscopic information for fully understanding the correlated electronic properties of this class of materials.

6.
J Org Chem ; 88(19): 13678-13685, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37691267

RESUMEN

Chemical structure tunability of organic π-conjugated molecules (OCMs) is highly appealing for fine-tuning the optoelectronic properties. Herein, we report a new series of carbazole-functionalized diazaphosphepines (DPP-CBZs) via one-pot phosphorus-nitrogen (P-N) chemistry. The one-pot synthesis harnessed the mild and selective P-N chemistry that successively installed carbazole moieties and seven-membered heterocycles at one P-center. Single-crystal structure studies revealed the tweezer-like structures for 1PO, 2PO, and 3PO that maintained the intramolecular donor-acceptor interactions between [d]-aryl moieties and carbazole. DPP-CBZs exhibited a more twisted central-diazaphosphepine ring compared with the reference molecules (1-3MO without carbazole group). DPP-CBZs with strong electron-accepting [d]-Ars generally showed lower photoluminescence quantum yields (PLQYs) than those of the reference molecules, which is probably due to the intramolecular charge transfer (ICT) from electron-donating carbazole to electron-withdrawing [d]-Ars. Upon the oxidation of the P-centers, PLQYs of DPP-CBZs increased. Furthermore, photophysical studies and theoretical studies suggested that the carbazole group had a strong impact on the structures of DPP-CBZs. As a proof of concept, we showed that grinding the mixture of 1PO as the electron-donating tweezer and benzene-1,2,4,5-tetracarbonitrile (BzCN) as the electron acceptor induced the formation of the CT complex.

7.
Nano Lett ; 22(14): 5635-5640, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35838660

RESUMEN

Here, we use low-temperature scanning tunneling microscopy and spectroscopy to study the polar surfaces of PdCoO2. On the CoO2-terminated polar surface, we detect the quasiparticle interference pattern originating from the Rashba-like spin-split surface states. On the well-ordered Pd-terminated polar surface, we observe a regular lattice that has a larger lattice constant than the atomic lattice of PdCoO2. In comparison with the shape of the hexagonal Fermi surface on the Pd-terminated surface, we identify this regular lattice as a fully two-dimensional incommensurate charge modulation that is driven by the Fermi surface nesting. More interestingly, we also find the moiré pattern induced by the interference between the two-dimensional incommensurate charge modulation in the Pd layer and its atomic lattice. Our results not only show a new charge modulation on the Pd surface of PdCoO2 but also pave the way for fully understanding the novel electronic properties of this material.

8.
Angew Chem Int Ed Engl ; 62(10): e202216086, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36573848

RESUMEN

Searching for functional square lattices in layered superconductor systems offers an explicit clue to modify the electron behavior and find exotic properties. The trigonal SnAs3 structural units in SnAs-based systems are relatively conformable to distortion, which provides the possibility to achieve structurally topological transformation and higher superconducting transition temperatures. In the present work, the functional As square lattice was realized and activated in Li0.6 Sn2 As2 and NaSnAs through a topotactic structural transformation of trigonal SnAs3 to square SnAs4 under pressure, resulting in a record-high Tc among all synthesized SnAs-based compounds. Meanwhile, the conductive channel transfers from the out-of-plane pz orbital to the in-plane px +py orbitals, facilitating electron hopping within the square 2D lattice and boosting the superconductivity. The reorientation of p-orbital following a directed local structure transformation provides an effective strategy to modify layered superconducting systems.

9.
J Am Chem Soc ; 144(14): 6208-6214, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35357829

RESUMEN

Here, we report on a new kind of compound, XδIr4X12-δ (X = P, As), the first hole-doped skutterudites superconductor. We provide atomic-resolution images of the caging As atoms using scanning transmission electron microscopy (STEM). By inserting As atoms into the caged structure under a high pressure, superconductivity emerges with a maximum transition temperature (Tc) of 4.4 K (4.8 K) in IrAs3 (IrP3). In contrast to all of the electron-doped skutterudites, the electronic states around the Fermi level in XδIr4X12-δ are dominated by the caged X atom, which can be described by a simple body-centered tight-binding model, implying a distinct pairing mechanism. Our density functional theory (DFT) calculations reveal an intimate relationship between the pressure-dependent local-phonon mode and the enhancement of Tc. The discovery of XδIr4X12-δ provides an arena to investigate the uncharted territory of hole-doped skutterudites, and the method proposed here represents a new strategy of carrier doping in caged structures, without introducing extra elements.

10.
Langmuir ; 38(42): 12773-12784, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36239489

RESUMEN

Wood-based solar steam evaporators have been attracting increasing interest due to their great potential for addressing water scarcity by utilizing sustainable materials and energy. However, engineering a 3D porous structure within the wood lumens and its effect on solar vapor evaporation have not yet been well explored. Here, a natural wood-based solar evaporator with hierarchical pores is fabricated by assembling polyvinyl alcohol within the lumens through an ice-templating approach. The polyvinyl alcohol porous network is engineered from vertically aligned microchannels to dendritically bridged pores with a narrowed size of a few micrometers and significantly increased surface area. Although the formation of plenty of microscopic channels increases the capillary force in comparison to the native wood lumen, the morphology change induces a high tortuosity factor of the porous structure, resulting in a reduced water transportation rate as well as an increased contact angle. On the other hand, the high surface area of the engineered wood lumens and the good hydrophilicity of the filled polyvinyl alcohol improve the ratio of the formed intermediate water, contributing to reduced vaporization enthalpy. Consequently, by using polydopamine as the photothermal material, the hierarchically structured polyvinyl alcohol-wood solar evaporator exhibits an evaporation rate of 1.6 kg m-2 h-1 under 1 sun irradiation and a high solar evaporation efficiency of up to 107%, which are higher than most of the reported natural-wood-based solar evaporators. Moreover, by exploring the correlation between porous morphology and performance, it has been found that the polyvinyl alcohol-wood composite not only presents an inexpensive and sustainable evaporator but also provides guidelines for designing high-performance steam generation devices.

11.
J Biomed Inform ; 128: 104048, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35248795

RESUMEN

The occurrence and development of diseases are related to the dysfunction of biomolecules (genes, metabolites, etc.) and the changes of molecule interactions. Identifying the key molecules related to the physiological and pathological changes of organisms from omics data is of great significance for disease diagnosis, early warning and drug-target prediction, etc. A novel feature selection algorithm based on the feature individual distinguishing ability and feature influence in the biological network (FS-DANI) is proposed for defining important biomolecules (features) to discriminate different disease conditions. The feature individual distinguishing ability is evaluated based on the overlapping area of the feature effective ranges in different classes. FS-DANI measures the feature network influence based on the module importance in the correlation network and the feature centrality in the modules. The feature comprehensive weight is obtained by combining the feature individual distinguishing ability and feature influence in the network. Then crucial feature subset is determined by the sequential forward search (SFS) on the feature list sorted according to the comprehensive weights of features. FS-DANI is compared with the six efficient feature selection methods on ten public omics datasets. The ablation experiment is also conducted. Experimental results show that FS-DANI is better than the compared algorithms in accuracy, sensitivity and specificity on the whole. On analyzing the gastric cancer miRNA expression data, FS-DANI identified two miRNAs (hsa-miR-18a* and hsa-miR-381), whose AUCs for distinguishing gastric cancer samples and normal samples are 0.959 and 0.879 in the discovery set and an independent validation set, respectively. Hence, evaluating biomolecules from the molecular level and network level is helpful for identifying the potential disease biomarkers of high performance.


Asunto(s)
Algoritmos , Área Bajo la Curva
12.
J Am Chem Soc ; 143(18): 7042-7049, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33926192

RESUMEN

The charge, spin, and composition degrees of freedom in a high-entropy alloy endow it with tunable valence and spin states, infinite combinations, and excellent mechanical performance. Meanwhile, the stacking, interlayer, and angle degrees of freedom in a van der Waals material bring to it exceptional features and technological applications. Integration of these two distinct material categories while keeping their merits would be tempting. On the basis of this heuristic thinking, we design and explore a new range of materials (i.e., dichalcogenides, halides, and phosphorus trisulfides) with multiple metallic constitutions and intrinsic layered structure, which are coined as high-entropy van der Waals materials. Millimeter-scale single crystals with a homogeneous element distribution can be efficiently acquired and easily exfoliated or intercalated in this materials category. Multifarious physical properties such as superconductivity, magnetic ordering, metal-insulator transition, and corrosion resistance have been exploited. Further research based on the concept of high-entropy van der Waals materials will enrich the high-throughput design of new systems with intriguing properties and practical applications.

13.
Nat Mater ; 19(6): 610-616, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32203460

RESUMEN

Dual topological materials are unique topological phases that host coexisting surface states of different topological nature on the same or on different material facets. Here, we show that Bi2TeI is a dual topological insulator. It exhibits band inversions at two time reversal symmetry points of the bulk band, which classify it as a weak topological insulator with metallic states on its 'side' surfaces. The mirror symmetry of the crystal structure concurrently classifies it as a topological crystalline insulator. We investigated Bi2TeI spectroscopically to show the existence of both two-dimensional Dirac surface states, which are susceptible to mirror symmetry breaking, and one-dimensional channels that reside along the step edges. Their mutual coexistence on the step edge, where both facets join, is facilitated by momentum and energy segregation. Our observation of a dual topological insulator should stimulate investigations of other dual topology classes with distinct surface manifestations coexisting at their boundaries.

14.
Rare Metals ; 37(4): 274-281, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29670321

RESUMEN

Bismuth tellurohalides with Rashba-type spin splitting exhibit unique Fermi surface topology and are developed as promising thermoelectric materials. However, BiTeBr, which belongs to this class of materials, is rarely investigated in terms of the thermoelectric transport properties. In the study, polycrystalline bulk BiTeBr with intensive texture was synthesized via spark plasma sintering (SPS). Additionally, its thermoelectric properties above room temperature were investigated along both the in-plane and out-plane directions, and they exhibit strong anisotropy. Low sound velocity along two directions is found and contributes to its low lattice thermal conductivity. Polycrystalline BiTeBr exhibits relatively good thermoelectric performance along the in-plane direction, with a maximum dimensionless figure of merit (ZT) of 0.35 at 560 K. Further enhancements of ZT are expected by utilizing systematic optimization strategies.

15.
J Am Chem Soc ; 139(24): 8106-8109, 2017 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-28578570

RESUMEN

We report superconductive iridium pnictides BaxIr4X12 (X = As and P) with a filled skutterudite structure, demonstrating that Ba filling dramatically alters their electronic properties and induces a nonmetal-to-metal transition with increasing the Ba content x. The highest superconducting transition temperatures are 4.8 and 5.6 K observed for BaxIr4As12 and BaxIr4P12, respectively. The superconductivity in BaxIr4X12 can be classified into the Bardeen-Cooper-Schrieffer type with intermediate coupling.

16.
Small ; 13(37)2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28741854

RESUMEN

The fundamental understanding of electrocatalytic active sites for hydrogen evolution reaction (HER) is significantly important for the development of metal complex involved carbon electrocatalysts with low kinetic barrier. Here, the MSx Ny (M = Fe, Co, and Ni, x/y are 2/2, 0/4, and 4/0, respectively) active centers are immobilized into ladder-type, highly crystalline coordination polymers as model carbon-rich electrocatalysts for H2 generation in acid solution. The electrocatalytic HER tests reveal that the coordination of metal, sulfur, and nitrogen synergistically facilitates the hydrogen ad-/desorption on MSx Ny catalysts, leading to enhanced HER kinetics. Toward the activity origin of MS2 N2 , the experimental and theoretical results disclose that the metal atoms are preferentially protonated and then the production of H2 is favored on the MN active sites after a heterocoupling step involving a N-bound proton and a metal-bound hydride. Moreover, the tuning of the metal centers in MS2 N2 leads to the HER performance in the order of FeS2 N2 > CoS2 N2 > NiS2 N2 . Thus, the understanding of the catalytic active sites provides strategies for the enhancement of the electrocatalytic activity by tailoring the ligands and metal centers to the desired function.

17.
Inorg Chem ; 53(11): 5684-91, 2014 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-24816074

RESUMEN

The structures and chemical features of layered compounds BaM2Ge4Ch6 (M = Rh, Ir; Ch = S, Se) synthesized by high-pressure and high-temperature methods have been systematically studied. These compounds crystallize in an orthorhombic phase with space group Pbca (No. 61). These compounds have the remarkable structural feature of M-Ge-Ch pyrite-type building units, stacking with Ba-Ch layers alternatively along the c axis. It is very rare and novel that pyrite-type subunits are the building blocks in layered compounds. Theoretical calculations and experimental results indicate that there are strongly polarized covalent bonds between Ge and Ch atoms, forming heteromolecule-like anions in these compounds. Moreover, Ge atoms in this structure exhibit an unusual valence state (∼+1) due to the tetrahedral coordination environment of Ge atoms along with M and Ch atoms simultaneously.

18.
J Bioinform Comput Biol ; 22(1): 2450002, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38567387

RESUMEN

Identifying valuable features from complex omics data is of great significance for disease diagnosis study. This paper proposes a new feature selection algorithm based on sample network (FS-SN) to mine important information from omics data. The sample network is constructed according to the sample neighbor relationship at the molecular (feature) expression level, and the distinguishing ability of the feature is evaluated based on the topology of the sample network. The sample network established on a feature with a strong discriminating ability tends to have many edges between the same group samples and few edges between the different group samples. At the same time, FS-SN removes redundant features according to the gravitational interaction between features. To show the validation of FS-SN, it was compared on ten public datasets with ERGS, mRMR, ReliefF, ATSD-DN, and INDEED which are efficient in omics data analysis. Experimental results show that FS-SN performed better than the compared methods in accuracy, sensitivity and specificity in most cases. Hence, FS-SN making use of the topology of the sample network is effective for analyzing omics data, it can identify key features that reflect the occurrence and development of diseases, and reveal the underlying biological mechanism.


Asunto(s)
Algoritmos
19.
Adv Mater ; 36(29): e2400428, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38747751

RESUMEN

The discovery of superconducting states in diverse topological materials generates a burgeoning interest to explore a topological superconductor and to realize a fault-tolerant topological quantum computation. A variety of routes to realize topological superconductors are proposed, and many types of topological materials are developed. However, a pristine topological material with a natural superconducting state is relatively rare as compared to topological materials with artificially induced superconductivity. Here, it is reported that the planar honeycomb structured 3D topological Dirac semimetal (TDS) SrCuBi, which is the Zintl phase, shows a natural surface superconductivity at 2.1 K under ambient pressure. It is clearly identified from theoretical calculations that a topologically nontrivial state exists on the (100) surface. Further, its superconducting transition temperature (Tc) increases by applying pressure, exhibiting a maximal Tc of 4.8 K under 6.2 GPa. It is believed that this discovery opens up a new possibility of exploring exotic Majorana fermions at the surface of 3D TDS superconductors.

20.
J Phys Condens Matter ; 36(36)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38821103

RESUMEN

Layered materials with kagome lattice have attracted a lot of attention due to the presence of nontrivial topological bands and correlated electronic states with tunability. In this work, we investigate a unique van der Waals (vdW) material system,A2M3X4(A= K, Rb, Cs;M= Ni, Pd;X= S, Se), where transition metal kagome lattices, chalcogen honeycomb lattices and alkali metal triangular lattices coexist simultaneously. A notable feature of this material is that each Ni/Pd atom is positioned in the center of four chalcogen atoms, forming a local square-planar environment. This crystal field environment results in a low spin stateS= 0 of Ni2+/Pd2+. A systematic study of the crystal growth, crystal structure, magnetic and transport properties of two representative compounds, Rb2Ni3S4and Cs2Ni3Se4, has been carried out on powder and single crystal samples. Both compounds exhibit nonmagneticp-type semiconducting behavior, closely related to the particular chemical environment of Ni2+ions and the alkali metal intercalated vdW structure. Additionally, Cs2Ni3Se4undergoes an insulator-metal transition (IMT) in transport measurements under pressure up to 87.1 GPa without any structural phase transition, while Rb2Ni3S4shows the tendency to be metalized.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA