RESUMEN
Myeloid-derived suppressor cells (MDSCs), the negative immune regulators, have been demonstrated to be involved in immune responses to a variety of pathological conditions, such as tumors, chronic inflammation, and infectious diseases. However, the roles and mechanisms underlying the expansion of MDSCs in malaria remain unclear. In this study, the phenotypic and functional characteristics of splenic MDSCs during Plasmodium yoelii NSM infection are described. Furthermore, we provide compelling evidence that the sera from P. yoelii-infected C57BL/6 mice containing excess IL-6 and granulocyte-macrophage colony-stimulating factor promote the accumulation of MDSCs by inducing Bcl2 expression. Serum-induced MDSCs exert more potent suppressive effects on T cell responses than control MDSCs within both in vivo P. yoelii infection and in vitro serum-treated bone marrow cells experiments. Serum treatment increases the MDSC inhibitory effect, which is dependent on Arg1 expression. Moreover, mechanistic studies reveal that the serum effects are mediated by JAK/STAT3 signaling. By inhibiting STAT3 phosphorylation with the JAK inhibitor JSI-124, effects of serum on MDSCs are almost eliminated. In vivo depletion of MDSCs with anti-Gr-1 or 5-fluorouracil significantly reduces the parasitemia and promotes Th1 immune response in P. yoelii-infected C57BL/6 mice by upregulating IFN-γ expression. In summary, this study indicates that P. yoelii infection facilitates the accumulation and function of MDSCs by upregulating the expression of Bcl2 and Arg1 via JAK/STAT3 signaling pathway in vivo and in vitro. Manipulating the JAK/STAT3 signaling pathway or depleting MDSCs could be promising therapeutic interventions to treat malaria.
Asunto(s)
Quinasas Janus , Malaria , Ratones Endogámicos C57BL , Células Supresoras de Origen Mieloide , Plasmodium yoelii , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Plasmodium yoelii/inmunología , Malaria/inmunología , Células Supresoras de Origen Mieloide/inmunología , Ratones , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/inmunología , Quinasas Janus/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Arginasa/metabolismo , Interleucina-6/metabolismo , Interleucina-6/inmunología , FemeninoRESUMEN
BACKGROUND: Immunogenic cell death (ICD) is a type of regulated cell death that plays a crucial role in activating the immune system in response to various stressors, including cancer cells and pathogens. However, the involvement of ICD in the human immune response against malaria remains to be defined. METHODS: In this study, data from Plasmodium falciparum infection cohorts, derived from cross-sectional studies, were analysed to identify ICD subtypes and their correlation with parasitaemia and immune responses. Using consensus clustering, ICD subtypes were identified, and their association with the immune landscape was assessed by employing ssGSEA. Differentially expressed genes (DEGs) analysis, functional enrichment, protein-protein interaction networks, and machine learning (least absolute shrinkage and selection operator (LASSO) regression and random forest) were used to identify ICD-associated hub genes linked with high parasitaemia. A nomogram visualizing these genes' correlation with parasitaemia levels was developed, and its performance was evaluated using receiver operating characteristic (ROC) curves. RESULTS: In the P. falciparum infection cohort, two ICD-associated subtypes were identified, with subtype 1 showing better adaptive immune responses and lower parasitaemia compared to subtype 2. DEGs analysis revealed upregulation of proliferative signalling pathways, T-cell receptor signalling pathways and T-cell activation and differentiation in subtype 1, while subtype 2 exhibited elevated cytokine signalling and inflammatory responses. PPI network construction and machine learning identified CD3E and FCGR1A as candidate hub genes. A constructed nomogram integrating these genes demonstrated significant classification performance of high parasitaemia, which was evidenced by AUC values ranging from 0.695 to 0.737 in the training set and 0.911 to 0.933 and 0.759 to 0.849 in two validation sets, respectively. Additionally, significant correlations between the expressions of these genes and the clinical manifestation of P. falciparum infection were observed. CONCLUSION: This study reveals the existence of two ICD subtypes in the human immune response against P. falciparum infection. Two ICD-associated candidate hub genes were identified, and a nomogram was constructed for the classification of high parasitaemia. This study can deepen the understanding of the human immune response to P. falciparum infection and provide new targets for the prevention and control of malaria.
Asunto(s)
Muerte Celular Inmunogénica , Malaria Falciparum , Humanos , Relevancia Clínica , Plasmodium falciparum/genética , Estudios Transversales , Malaria Falciparum/genética , Biología Computacional , Aprendizaje AutomáticoRESUMEN
Objectives: To evaluate the clinical efficacy of C5V chemotherapy combined with transcatheter subcutaneous radiofrequency ablation in the treatment of children with advanced (stage III/IV) hepatoblastoma. Methods: Eighty children with advanced (Stage III/IV) hepatoblastoma were admitted in Hebei Children's Hospital from May 2019 to September 2021 randomly divided into two groups: control group and experimental group, with 40 cases in each group. Children in the control group received C5V chemotherapy, while those in the experimental group received C5V chemotherapy combined with transcatheter subcutaneous radiofrequency ablation. After treatment, the treatment effect, adverse drug reactions, AFP, ALT, AST, HBG and other indicators of the two groups were compared and analyzed. And the difference in survival rate and recurrence rate between the two groups was compared and analyzed. Results: The total efficacy of the experimental group was 67.5%, which was significantly better than 45% of the control group (p=0.04). The incidence of adverse drug reactions in the experimental group was 50%, while that in the control group was 35% (p=0.15). After treatment, AFP, ALT and AST in the experimental group were significantly lower than those in the control group, while the HBG was slightly higher than that of the control group (p=0.03). Moreover, the overall survival rate of the experimental group was significantly higher than that of the control group, and the recurrence rate was significantly lower than that of the control group. Conclusion: C5V chemotherapy combined with transcathetal subcutaneous radio fascial ablation is a safe and effective regimen for children with advanced (stage III/IV) hepatoblastoma, boasting definite efficacy and no increase in adverse reactions.
RESUMEN
Hepatitis B virus (HBV) DNA integration is closely related to the occurrence of liver cancer. However, current studies mostly focus on the detection of the viral integration sites, ignoring the relationship between the frequency of viral integration and liver cancer. Thus, this study uses previous data to distinguish the breakpoints according to the integration frequency and analyzes the characteristics of different groups. This analysis revealed that three sets of breakpoints were characterized by its own integrated sample frequency, breakpoint distribution, and affected gene pathways. This result indicated an evolution in the virus integration sites in the process of tumor formation and development. Therefore, our research clarified the characteristics and differences in the sites of viral integration in tumors and adjacent tissues, and clarified the key signaling pathways affected by viral integration. Hence, these findings might be of great significance in the understanding of the role of viral integration frequency in hepatocellular carcinoma.
Asunto(s)
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virología , Virus de la Hepatitis B/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virología , Integración Viral/genética , Carcinogénesis/genética , Estudios de Casos y Controles , Puntos de Rotura del Cromosoma , Frecuencia de los Genes , Virus de la Hepatitis B/aislamiento & purificación , Humanos , Transducción de Señal/genéticaRESUMEN
BACKGROUND: Malaria has high morbidity and mortality rates in some parts of tropical and subtropical countries. Besides respiratory and metabolic function, lung plays a role in immune system. γδT cells have multiple functions in producing cytokines and chemokines, regulating the immune response by interacting with other cells. It remains unclear about the role of γδT cells in the lung of mice infected by malaria parasites. METHODS: Flow cytometry (FCM) was used to evaluate the frequency of γδT cells and the effects of γδT cells on the phenotype and function of B and T cells in Plasmodium yoelii-infected wild-type (WT) or γδTCR knockout (γδT KO) mice. Haematoxylin-eosin (HE) staining was used to observe the pathological changes in the lungs. RESULTS: The percentage and absolute number of γδT cells in the lung increased after Plasmodium infection (p < 0.01). More γδT cells were expressing CD80, CD11b, or PD-1 post-infection (p < 0.05), while less γδT cells were expressing CD34, CD62L, and CD127 post-infection (p < 0.05). The percentages of IL-4+, IL-5+, IL-6+, IL-21+, IL-1α+, and IL-17+ γδT cells were increased (p < 0.05), but the percentage of IFN-γ-expressing γδT cells decreased (p < 0.05) post-infection. The pathological changes in the lungs of the infected γδT KO mice were not obvious compared with the infected WT mice. The proportion of CD3+ cells and absolute numbers of CD3+ cells, CD3+ CD4+ cells, CD3+ CD8+ cells decreased in γδT KO infected mice (p < 0.05). γδT KO infected mice exhibited no significant difference in the surface molecular expression of T cells compared with the WT infected mice (p > 0.05). While, the percentage of IFN-γ-expressing CD3+ and CD3+ CD8+ cells increased in γδT KO infected mice (p < 0.05). There was no significant difference in the absolute numbers of the total, CD69+, ICOS+, and CD80+ B cells between the WT infected and γδT KO infected mice (p > 0.05). CONCLUSIONS: The content, phenotype, and function of γδT cells in the lung of C57BL/6 mice were changed after Plasmodium infection. γδT cells contribute to T cell immune response in the progress of Plasmodium infection.
Asunto(s)
Linfocitos Intraepiteliales/inmunología , Pulmón/inmunología , Malaria/inmunología , Plasmodium yoelii/fisiología , Animales , Linfocitos B/inmunología , Femenino , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Linfocitos T/inmunologíaRESUMEN
BACKGROUND: Recent studies have shown that CD103 is an important marker for tissue-resident memory T cells (TRM) which plays an important role in anti-infection. However, the role of CD103+ TRM was not elucidated in the progress of S. japonicum infection induced disease. METHODS: 6-8 weeks old C57BL/6 mice were infected by S. japonicum. Mice were sacrificed and the lungs were removed 5-6 weeks after infection. Immunofluorescent staining and Q-PCR were performed to identify the expression of CD103 molecule. Single cellular populations were made, percentages of CD103 on both CD4+ and CD8+ T lymphocytes were dynamical observed by flow cytometry (FCM). Moreover, the expression of memory T cells related molecules CD69 and CD62L, T cell function associated molecules CD107a, IFN-γ, IL-4, IL-9, and IL-10 were compared between CD103+ CD4+ and CD8+ T cells by FCM. RESULTS: CD103+ cells were emerged in the lung of both naive and S. japonicum infected mice. Both the percentage and the absolute numbers of pulmonary CD4+ and CD8+ cells were increased after S. japonicum infection (P < 0.05). The percentage of CD103+ cells in CD8+ T cells decreased significantly at the early stage of S. japonicum infection (P < 0.05). Increased CD69, decreased CD62L and CD107a expressions were detected on both CD4+ and CD8+ CD103+ T cells in the lungs of infected mice (P < 0.05). Compared to CD8+ CD103+ T cells, CD4+ CD103+ T cells from infected mice expressed higher level of CD69 and lower level CD62L molecules (P < 0.05). Moreover, higher percentage of IL-4+, IL-9+ and IL-10+ cells on CD4+ CD103+ pulmonary T cells was found in infected mice (P < 0.05). Significantly increased IL-4 and IL-9, and decreased IFN-γ expressing cells were detected in CD8+CD103+ cells of infected mice (P < 0.05). CONCLUSIONS: CD103-expressing pulmonary CD4+ and CD8+ T cells play important roles in mediating S. japonicum infection induced granulomatous inflammation in the lung.
Asunto(s)
Antígenos CD/genética , Antígenos CD/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Cadenas alfa de Integrinas/genética , Cadenas alfa de Integrinas/metabolismo , Schistosoma japonicum , Esquistosomiasis Japónica/metabolismo , Animales , Biomarcadores/metabolismo , Citocinas/metabolismo , Femenino , Expresión Génica/inmunología , Memoria Inmunológica , Pulmón/metabolismo , Pulmón/parasitología , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa , Esquistosomiasis Japónica/microbiologíaRESUMEN
Myeloid-derived suppressor cells (MDSCs), a heterogeneous group of immune cells from the myeloid lineage, play an important part in suppression of host immune responses during many pathologic conditions, including cancer and infectious diseases. Thus, understanding the functional diversity of these cells as well as the underlying mechanisms is crucial for the development of disease control strategies. The role of MDSCs during Schistosoma japonicum infection, however, is not clear, and there is a lack of systematic study so far. In this study, we provide strong evidence that the soluble egg Ag (SEA) and schistosome worm Ag (SWA) of S. japonicum enhance the accumulation of MDSCs. Ag-induced MDSCs have more potent suppressive effects on T cell responses than do control MDSCs in both in vivo S. japonicum infection and in vitro SEA- and SWA-treated mouse bone marrow cells experiments. Interestingly, the enhanced suppressive activity of MDSCs by Ag administration was coupled with a dramatic induction of the NADPH oxidase subunits gp91phox and p47phox and was dependent on the production of reactive oxygen species. Moreover, mechanistic studies revealed that the Ag effects are mediated by JAK/STAT3 signaling. Inhibition of STAT3 phosphorylation by the JAK inhibitor JSI-124 almost completely abolished the Ag effects on the MDSCs. In summary, this study sheds new light on the immune modulatory role of SEA and SWA and demonstrates that the expansion of MDSCs may be an important element of a cellular network regulating immune responses during S. japonicum infection.
Asunto(s)
Quinasas Janus/metabolismo , Células Supresoras de Origen Mieloide/fisiología , Factor de Transcripción STAT3/metabolismo , Esquistosomiasis Japónica/metabolismo , Transducción de Señal , Animales , Proliferación Celular , Regulación de la Expresión Génica , Ratones , Células Supresoras de Origen Mieloide/inmunología , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Schistosoma japonicum/inmunología , Esquistosomiasis Japónica/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Triterpenos/farmacologíaRESUMEN
BACKGROUND: Hepatitis B Viral (HBV) infection is one of the major causes of Hepatocellular Carcinoma (HCC). Mounting evidence had provided that the HBV integration might be a critical con-tributor of HCC carcinogenesis. OBJECTIVE AND METHODS: To explore the profile of HBV integration in the plasma DNA, the method of next-generation sequencing, HBV capture and bioinformatics had been employed to screen for HBV in-tegration sites in the plasma samples. RESULTS: In the initial experiment, a total of 87 breakpoints were detected in the 20 plasma samples. The distribution of breakpoints showed that there was significant enrichment of breakpoints in the region of intron. Furthermore, the HBV breakpoints were prone to occur in the region of X protein (1,700-2,000bp) in the plasma samples. The pathway analysis had revealed that the HBV integrations sites were specifically enriched in the cancer pathway. CONCLUSION: Altogether, our results had provided direct evidence for the HBV integration in plasma DNA, and they might be potentially useful for future HCC prognosis and diagnosis.
RESUMEN
Malaria infection triggers vigorous host immune responses; however, the parasite ligands, host receptors, and the signaling pathways responsible for these reactions remain unknown or controversial. Malaria parasites primarily reside within RBCs, thereby hiding themselves from direct contact and recognition by host immune cells. Host responses to malaria infection are very different from those elicited by bacterial and viral infections and the host receptors recognizing parasite ligands have been elusive. Here we investigated mouse genome-wide transcriptional responses to infections with two strains of Plasmodium yoelii (N67 and N67C) and discovered differences in innate response pathways corresponding to strain-specific disease phenotypes. Using in vitro RNAi-based gene knockdown and KO mice, we demonstrated that a strong type I IFN (IFN-I) response triggered by RNA polymerase III and melanoma differentiation-associated protein 5, not Toll-like receptors (TLRs), binding of parasite DNA/RNA contributed to a decline of parasitemia in N67-infected mice. We showed that conventional dendritic cells were the major sources of early IFN-I, and that surface expression of phosphatidylserine on infected RBCs might promote their phagocytic uptake, leading to the release of parasite ligands and the IFN-I response in N67 infection. In contrast, an elevated inflammatory response mediated by CD14/TLR and p38 signaling played a role in disease severity and early host death in N67C-infected mice. In addition to identifying cytosolic DNA/RNA sensors and signaling pathways previously unrecognized in malaria infection, our study demonstrates the importance of parasite genetic backgrounds in malaria pathology and provides important information for studying human malaria pathogenesis.
Asunto(s)
Interacciones Huésped-Parásitos , Inmunidad Innata , Malaria/inmunología , Parasitemia/inmunología , Plasmodium yoelii/fisiología , Transducción de Señal , Anciano , Animales , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Interferón Tipo I/metabolismo , Malaria/mortalidad , Malaria/parasitología , Ratones , Ratones Noqueados , Parasitemia/parasitología , Fagocitosis , Plasmodium yoelii/inmunologíaRESUMEN
BACKGROUND: The rodent malaria parasite Plasmodium yoelii is an important animal model for studying host-parasite interaction and molecular basis of malaria pathogenesis. Although a draft genome of P. yoelii yoelii YM is available, and RNA sequencing (RNA-seq) data for several rodent malaria species (RMP) were reported recently, variations in coding regions and structure of mRNA transcript are likely present between different parasite strains or subspecies. Sequencing of cDNA libraries from additional parasite strains/subspecies will help improve the gene models and genome annotation. METHODS: Here two directional cDNA libraries from mixed blood stages of a subspecies of P. yoelii (P. y. nigeriensis NSM) with or without mefloquine (MQ) treatment were sequenced, and the sequence reads were compared to the genome and cDNA sequences of P. y. yoelii YM in public databases to investigate single nucleotide polymorphisms (SNPs) in coding regions, variations in intron-exon structure and differential splicing between P. yoelii subspecies, and variations in gene expression under MQ pressure. RESULTS: Approximately 56 million of 100 bp paired-end reads were obtained, providing an average of ~225-fold coverage for the coding regions. Comparison of the sequence reads to the YM genome revealed introns in 5' and 3' untranslated regions (UTRs), altered intron/exon boundaries, alternative splicing, overlapping sense-antisense reads, and potentially new transcripts. Interestingly, comparison of the NSM RNA-seq reads obtained here with those of YM discovered differentially spliced introns; e.g., spliced introns in one subspecies but not the other. Alignment of the NSM cDNA sequences to the YM genome sequence also identified ~84,000 SNPs between the two parasites. CONCLUSION: The discoveries of UTR introns and differentially spliced introns between P. yoelii subspecies raise interesting questions on the potential role of these introns in regulating gene expression and evolution of malaria parasites.
Asunto(s)
Empalme Alternativo/genética , Intrones/genética , Plasmodium yoelii/genética , ARN sin Sentido/genética , Genoma de Protozoos/genética , Malaria/parasitología , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
The identity of vampire bat saliva anticoagulant remained elusive for almost a century. Sequencing the salivary gland genes from the vampire bat Desmodus rotundus identified Desmolaris as a novel 21.5-kDa naturally deleted (Kunitz 1-domainless) form of tissue factor pathway inhibitor. Recombinant Desmolaris was expressed in HEK293 cells and characterized as a slow, tight, and noncompetitive inhibitor of factor (F) XIa by a mechanism modulated by heparin. Desmolaris also inhibits FXa with lower affinity, independently of protein S. In addition, Desmolaris binds kallikrein and reduces bradykinin generation in plasma activated with kaolin. Truncated and mutated forms of Desmolaris determined that Arg32 in the Kunitz-1 domain is critical for protease inhibition. Moreover, Kunitz-2 and the carboxyl-terminus domains mediate interaction of Desmolaris with heparin and are required for optimal inhibition of FXIa and FXa. Notably, Desmolaris (100 µg/kg) inhibited FeCl3-induced carotid artery thrombus without impairing hemostasis. These results imply that FXIa is the primary in vivo target for Desmolaris at antithrombotic concentrations. Desmolaris also reduces the polyphosphate-induced increase in vascular permeability and collagen- and epinephrine-mediated thromboembolism in mice. Desmolaris emerges as a novel anticoagulant targeting FXIa under conditions in which the coagulation activation, particularly the contact pathway, plays a major pathological role.
Asunto(s)
Anticoagulantes/química , Anticoagulantes/farmacología , Quirópteros , Inhibidores del Factor Xa , Proteínas y Péptidos Salivales/química , Proteínas y Péptidos Salivales/farmacología , Trombosis/tratamiento farmacológico , Animales , Bradiquinina/química , Bradiquinina/genética , Bradiquinina/metabolismo , Cloruros/efectos adversos , Cloruros/farmacología , Modelos Animales de Enfermedad , Factor Xa/química , Factor Xa/genética , Factor Xa/metabolismo , Compuestos Férricos/efectos adversos , Compuestos Férricos/farmacología , Células HEK293 , Humanos , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/metabolismo , Calicreínas/química , Calicreínas/genética , Calicreínas/metabolismo , Ratones , Noxas/efectos adversos , Noxas/farmacología , Estructura Terciaria de Proteína , Proteínas y Péptidos Salivales/genética , Trombosis/inducido químicamente , Trombosis/genética , Trombosis/metabolismoRESUMEN
To facilitate accurate prediction and empirical research on regional agricultural carbon emissions, this paper uses the LLE-PSO-XGBoost carbon emission model, which combines the Local Linear Embedding (LLE), Particle Swarm Algorithm (PSO) and Extreme Gradient Boosting Algorithm (XGBoost), to forecast regional agricultural carbon emissions in Anhui Province under different scenarios. The results show that the regional agricultural carbon emissions in Anhui Province generally show an upward and then downward trend during 2000-2021, and the regional agricultural carbon emissions in Anhui Province in 2030 are expected to fluctuate between 11,342,100 tones and 14,445,700 tones under five different set scenarios. The projections of regional agricultural carbon emissions can play an important role in supporting the development of local regional agriculture, helping to guide the input and policy guidance of local rural low-carbon agriculture and promoting the development of rural areas towards a resource-saving and environment-friendly society.
Asunto(s)
Agricultura , Carbono , Carbono/análisis , Agricultura/métodos , China , Dióxido de Carbono/análisis , Políticas , Desarrollo EconómicoRESUMEN
Danmakus are user-generated comments that overlay on videos, enabling real-time interactions between viewers and video content. The emotional orientation of danmakus can reflect the attitudes and opinions of viewers on video segments, which can help video platforms optimize video content recommendation and evaluate users' abnormal emotion levels. Aiming at the problems of low transferability of traditional sentiment analysis methods in the danmaku domain, low accuracy of danmaku text segmentation, poor consistency of sentiment annotation, and insufficient semantic feature extraction, this paper proposes a video danmaku sentiment analysis method based on MIBE-RoBERTa-FF-BiLSTM. This paper constructs a "Bilibili Must-Watch List and Top Video Danmaku Sentiment Dataset" by ourselves, covering 10,000 positive and negative sentiment danmaku texts of 18 themes. A new word recognition algorithm based on mutual information (MI) and branch entropy (BE) is used to discover 2610 irregular network popular new words from trigrams to heptagrams in the dataset, forming a domain lexicon. The Maslow's hierarchy of needs theory is applied to guide the consistent sentiment annotation. The domain lexicon is integrated into the feature fusion layer of the RoBERTa-FF-BiLSTM model to fully learn the semantic features of word information, character information, and context information of danmaku texts and perform sentiment classification. Comparative experiments on the dataset show that the model proposed in this paper has the best comprehensive performance among the mainstream models for video danmaku text sentiment classification, with an F1 value of 94.06%, and its accuracy and robustness are also better than other models. The limitations of this paper are that the construction of the domain lexicon still requires manual participation and review, the semantic information of danmaku video content and the positive case preference are ignored.
RESUMEN
Rationale: Extrachromosomal circular DNA is a hallmark of cancer, but its role in shaping the genome heterogeneity of urothelial bladder carcinoma (UBC) remains poorly understood. Here, we comprehensively analyzed the features of extrachromosomal circular DNA in 80 UBC patients. Methods: We performed whole-genome/exome sequencing (WGS/WES), Circle-Seq, single-molecule real-time (SMRT) long-read sequencing of circular DNA, and RNA sequencing (RNA-Seq) on 80 pairs of tumor and AT samples. We used our newly developed circular DNA analysis software, Circle-Map++ to detect small extrachromosomal circular DNA from Circle-Seq data. Results: We observed a high load and significant heterogeneity of extrachromosomal circular DNAs in UBC, including numerous single-locus and complex chimeric circular DNAs originating from different chromosomes. This includes highly chimeric circular DNAs carrying seven oncogenes and circles from nine chromosomes. We also found that large tumor-specific extrachromosomal circular DNAs could influence genome-wide gene expression, and are detectable in time-matched urinary sediments. Additionally, we found that the extrachromosomal circular DNA correlates with hypermutation, copy number variation, oncogene amplification, and clinical outcome. Conclusions: Overall, our study provides a comprehensive extrachromosomal circular DNA map of UBC, along with valuable data resources and bioinformatics tools for future cancer and extrachromosomal circular DNA research.
Asunto(s)
Variaciones en el Número de Copia de ADN , ADN Circular , Neoplasias de la Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/genética , Humanos , ADN Circular/genética , Variaciones en el Número de Copia de ADN/genética , Secuenciación Completa del Genoma/métodos , Heterogeneidad Genética , Masculino , Femenino , Secuenciación del Exoma/métodos , Anciano , Mutación/genéticaRESUMEN
Genetic cross is a powerful tool for studying malaria genes contributing to drug resistance, parasite development, and pathogenesis. Cloning and identification of recombinant progeny (RP) is laborious and expensive, especially when a large proportion of progeny derived from self-fertilization are present in the uncloned progeny of a genetic cross. Since the frequency of cross-fertilization affects the number of recombinant progeny in a genetic cross, it is important to optimize the procedure of a genetic cross to maximize the cross-fertilization. Here we investigated the factors that might influence the chances of obtaining RP from a genetic cross and showed that different Plasmodium yoelii strains/subspecies/clones had unique abilities in producing oocysts in a mosquito midgut. When a genetic cross is performed between two parents producing different numbers of functional gametocytes, the ratio of parental parasites must be adjusted to improve the chance of obtaining RP. An optimized parental ratio could be established based on oocyst counts from single infection of each parent before crossing experiments, which may reflect the efficiency of gametocyte production and/or fertilization. The timing of progeny cloning is also important; cloning of genetic cross progeny from mice directly infected with sporozoites (vs. frozen blood after needle passage) at a time when parasitemia is low (usually <1%) could improve the chance of obtaining RP. This study provides an optimized protocol for efficiently cloning RPs from a genetic cross of malaria parasites.
Asunto(s)
Clonación Molecular , Cruzamientos Genéticos , Plasmodium yoelii/genética , Recombinación Genética , Alelos , Animales , Anopheles/parasitología , Eritrocitos/parasitología , Genotipo , Insectos Vectores/parasitología , Malaria/parasitología , Ratones , Ratones Endogámicos BALB C , Oocistos/fisiología , Parasitemia/parasitología , Plasmodium yoelii/clasificación , Plasmodium yoelii/fisiología , Reacción en Cadena de la PolimerasaRESUMEN
Scientific analysis of regional agricultural carbon emission prediction models and empirical studies are of great practical significance to the realization of low-carbon agriculture, which can help revitalize and build up ecological and beautiful countryside in China. This paper takes agriculture in Guangdong Province, China, as the research object, and uses the extended STIPAT model to construct an indicator system for the factors influencing agricultural carbon emissions in Guangdong. Based on this system, a combined Isomap-ACO-ET prediction model combing the isometric mapping algorithm (Isomap), ant colony algorithm (ACO) and extreme random tree algorithm (ET) was used to predict agriculture carbon emissions in Guangdong Province under five scenarios. Effective predictions can be made for agricultural carbon emissions in Guangdong Province, which are expected to fluctuate between 11,142,200 tons and 11,386,000 tons in 2030. And compared with other machine learning and neural network models, the Isomap-ACO-ET model has a better prediction performance with an MSE of 0.00018 and an accuracy of 98.7%. To develop low-carbon agriculture in Guangdong Province, we should improve farming methods, reduce the intensity of agrochemical application, strengthen the development and promotion of agricultural energy-saving and emission reduction technologies and low-carbon energy sources, reduce the intensity of carbon emissions from agricultural energy consumption, optimize the agricultural planting structure, and develop green agricultural products and agro-ecological tourism according to local conditions. This will promote the development of agriculture in Guangdong Province in a green and sustainable direction.
RESUMEN
Plantaricin is a kind of bacteriocin with broad-spectrum antibacterial activity on several food pathogens and spoilage microorganisms, showing potential in biopreservation applications. However, the low yield of plantaricin limits its industrialization. In this study, it was found that the co-culture of Wickerhamomyces anomalus Y-5 and Lactiplantibacillus paraplantarum RX-8 could enhance plantaricin production. To investigate the response of L. paraplantarum RX-8 facing W. anomalus Y-5 and understand the mechanisms activated when increasing plantaricin yield, comparative transcriptomic and proteomic analyses of L. paraplantarum RX-8 were performed in mono-culture and co-culture. The results showed that different genes and proteins in the phosphotransferase system (PTS) were improved and enhanced the uptake of certain sugars; the key enzyme activity in glycolysis was increased with the promotion of energy production; arginine biosynthesis was downregulated to increase glutamate mechanism and then promoted plantaricin yield; and the expression of several genes/proteins related to purine metabolism was downregulated and those related to pyrimidine metabolism was upregulated. Meanwhile, the increase of plantaricin synthesis by upregulation of plnABCDEF cluster expression under co-culture indicated that the PlnA-mediated quorum sensing (QS) system took part in the response mechanism of L. paraplantarum RX-8. However, the absence of AI-2 did not influence the inducing effect on plantaricin production. Mannose, galactose, and glutamate were critical metabolites and significantly simulate plantaricin production (p < 0.05). In summary, the findings provided new insights into the interaction between bacteriocin-inducing and bacteriocin-producing microorganisms, which may serve as a basis for further research into the detailed mechanism.
RESUMEN
Recurrent intussusception is one of the common acute abdominal diseases in infants, which seriously affects the physical and mental health of infants, but its risk factors have not been fully clarified. The objective of this study was to evaluate the relationship between Th2/Th1 cytokine imbalance and recurrent intussusception, so as to provide a theoretical basis for making a more comprehensive treatment strategy for patients with recurrent intussusception. A retrospective study was conducted between July 2012 and September 2022, enrolling patients with intussusception in Children's Hospital of Hebei Province. The patients were divided into recurrent group and non-recurrent group according to whether they suffered from recurrent intussusception. We summarized the clinical characteristics of recurrent intussusception and explored the role of T helper 2 (Th2)/T helper 1 (Th1) cytokine imbalance in it. A total of 2008 patients were initially enrolled and finally 1657 patients qualified for the study. The results showed that the incidence of recurrent intussusception was 18.41% and the Th2/Th1 cytokine imbalance was closely related to the incidence of recurrent intussusception. Th2/Th1 cytokine imbalance is a potential risk factor of recurrent intussusception and more likely to occur in children between the ages of 2 and 3. Future studies are needed to preemptively target the Th2/Th1 cytokine imbalance to formulate a reasonable treatment plan for children with intussusception to avoid recurrence.
Asunto(s)
Citocinas , Intususcepción , Lactante , Humanos , Niño , Preescolar , Estudios Retrospectivos , Células TH1 , Células Th2 , Intususcepción/epidemiología , IncidenciaRESUMEN
Background: The integration of human papillomavirus (HPV) is closely related to the occurrence of cervical cancer. However, little is known about the complete state of HPV integration into the host genome. Methods: In this study, three HPV-positive cell lines, HeLa, SiHa, and CaSki, were subjected to NANOPORE long-read sequencing to detect HPV integration. Analysis of viral integration patterns using independently developed software (HPV-TSD) yielded multiple complete integration patterns for the three HPV cell lines. Results: We found distinct differences between the integration patterns of HPV18 and HPV16. Furthermore, the integration characteristics of the viruses were significantly different, even though they all belonged to HPV16 integration. The HPV integration in the CaSki cells was relatively complex. The HPV18 integration status in HeLa cells was the dominant, whereas the percentage of integrated HPV 16 in SiHa and CaSki cells was significantly lower. In addition, the virus sequences in the HeLa cells were incomplete and existed in an integrated state. We also identified a large number of tandem repeats in HPV16 and HPV18 integration. Our study not only clarified the feasibility of high-throughput long-read sequencing in the study of HPV integration, but also explored a variety of HPV integration models, and confirmed that viral integration is an important form of HPV in cell lines. Conclusion: Elucidating HPV integration patterns will provide critical guidance for developing a detection algorithm for HPV integration, as well as the application of virus integration in clinical practice and drug research and development.
RESUMEN
Coacervation driven liquid-liquid phase separation of biopolymers has aroused considerable attention for diverse applications, especially for the construction of microstructured polymeric materials. Herein, a coacervate-to-hydrogel transition strategy is developed to create macroporous hydrogels (MPH), which are formed via the coacervation process of supramolecular assemblies (SA) built by the host-guest complexation between γ-cyclodextrin and anthracene dimer. The weak and reversible supramolecular crosslinks endow the SA with liquid-like rheological properties, which facilitate the formation of SA-derived macroporous coacervates and the subsequent transition to MPH (pore size ≈ 100 µm). The excellent structural dynamics (derived from SA) and the cytocompatible void-forming process of MPH can better accommodate the dramatic volumetric expansion associated with colony growth of encapsulated multicellular spheroids compared with the non-porous static hydrogel with similar initial mechanical properties. The findings of this work not only provide valuable guidance to the design of biomaterials with self-evolving structures but also present a promising strategy for 3D multicellular spheroid culture and other diverse biomedical applications.