Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Skin Res Technol ; 30(7): e13860, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39073182

RESUMEN

BACKGROUND: The perfect repair of damaged skin has always been a constant goal for scientists; however, the repair and reconstruction of skin is still a major problem and challenge in injury and burns medicine. Human amniotic membrane (hAM), with its good mechanical properties and anti-inflammatory, antioxidant and antimicrobial benefits, containing growth factors that promote wound healing, has evolved over the last few decades from simple skin sheets to high-tech dressings, such as being made into nanocomposites, hydrogels, powders, and electrostatically spun scaffolds. This paper aims to explore the historical development, applications, trends, and research hotspots of hAM in wound healing. METHODS: We examined 2660 publications indexed in the Web of Science Core Collection (WoSCC) from January 1, 1975 to July 12, 2023. Utilizing bibliometric methods, we employed VOSviewer, CiteSpace, and R-bibliometrix to characterize general information, identify development trends, and highlight research hotspots. Subsequently, we identified a collection of high-quality English articles focusing on the roles of human amniotic epithelial stem cells (hAESCs), human amniotic mesenchymal stem cells (hAMSCs), and amniotic membrane (AM) scaffolds in regenerative medicine and tissue engineering. RESULTS: Bibliometric analysis identified Udice-French Research Universities as the most productive affiliation and Tseng S.C.G. as the most prolific author. Keyword analysis, historical direct quotations network, and thematic analysis helped us review the historical and major themes in this field. Our examination included the knowledge structure, global status, trends, and research hotspots regarding the application of hAM in wound healing. Our findings indicate that contemporary research emphasizes the preparation and application of products derived from hAM. Notably, both hAM and the cells isolated from it - hADSCs and hAESCs are prominent and promising areas of research in regenerative medicine and tissue engineering. CONCLUSION: This research delivers a comprehensive understanding of the knowledge frameworks, global dynamics, emerging patterns, and primary research foci in the realm of hAM applications for wound healing. The field is rapidly evolving, and our findings offer valuable insights for researchers. Future research outcomes are anticipated to be applied in clinical practice, enhancing methods for disease prevention, diagnosis, and treatment.


Asunto(s)
Amnios , Cicatrización de Heridas , Humanos , Ingeniería de Tejidos/métodos , Apósitos Biológicos , Andamios del Tejido , Células Epiteliales/fisiología
2.
BMC Med Educ ; 24(1): 832, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090597

RESUMEN

BACKGROUND: Medical school learning environment (MSLE) has a holistic impact on students' psychosomatic health, academic achievements, and personal development. Students in different grades perceive MSLE in different ways. Thus, it is essential to investigate the specific role of student's grade in the perception of MSLE. METHODS: Using the Johns Hopkins Learning Environment Scale (JHLES) as a quantification instrument for the perception level of MSLE, 10,901 medical students in 12 universities in China were categorized into low or high JHLES group according to their questionnaires. We investigated the relationship between student's grade and JHLES category by univariate analysis employing Pearson Chi-square test and Welch's ANOVA. Then multivariable logistic regression analysis confirmed the predictive efficacy of student's grade. A nomogram concerning the prediction of low JHLES score probability in medical students was also constructed. RESULTS: A significant difference between two JHLES categories among students in different grades was observed (p < 0.001), with the proportion of the high JHLES group dominating in grade 1, 5, and the graduate subgroups (p < 0.001). The mean JHLES score declined especially in the third and fourth graders compared to freshmen (p < 0.001), while the mean score among the fifth graders had a remarkable rebound from the third graders (p < 0.001). Most imperatively, identified by multivariable logistic regression analysis, students in grade 3 (OR = 1.470, 95% CI = 1.265-1.709, p < 0.001) and 4 (OR = 1.578, 95% CI = 1.326-1.878, p < 0.001) perceived more negatively than freshmen. The constructed nomogram provided a promising prediction model for student's low JHLES score probability, with accuracy, accordance, and discrimination (area under the curve (AUC) = 0.627). CONCLUSION: The student's grade was a significant influencing factor in medical students' perception of MSLE. The perceptions among the third and fourth graders got worse, probably due to the worrying changes in various aspects of MSLE during that period. The relevant and appropriate interventions to improve medical students' perceptions are urgently needed.


Asunto(s)
Estudiantes de Medicina , Humanos , Estudiantes de Medicina/psicología , Estudios Transversales , China , Femenino , Masculino , Aprendizaje , Encuestas y Cuestionarios , Facultades de Medicina , Adulto Joven , Percepción , Educación de Pregrado en Medicina , Adulto
3.
Nanomaterials (Basel) ; 14(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38786819

RESUMEN

ZnO nanostructures show great potential in hydrogen sensing at atmospheric conditions for good gas adsorption abilities. However, there is less research on low-pressure hydrogen sensing performance due to its low concentration and in-homogeneous distributions under low-pressure environments. Here, we report the low-pressure hydrogen sensing by the construction of Al-N-co-doped ZnO nanorods based on the adsorption-induced field emission enhancement effect in the pressure range of 10-7 to 10-3 Pa. The investigation indicates that the Al-N-co-doped ZnO sample is the most sensitive to low-pressure hydrogen sensing among all ZnO samples, with the highest sensing current increase of 140% for 5 min emission. In addition, the increased amplitude of sensing current for the Al-N-co-doped ZnO sample could reach 75% at the pressure 7 × 10-3 Pa for 1 min emission. This work not only expands the hydrogen sensing applications to the co-doped ZnO nanomaterials, but also provides a promising approach to develop field emission cathodes with strong low-pressure hydrogen sensing effect.

4.
Burns ; 50(8): 1977-1990, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39278766

RESUMEN

BACKGROUND: Sepsis is one of the major causes of morbidity and mortality in burn patients. However, the optimal timing of admission which can minimize the probability of sepsis is still unclear. This study aims to determine the optimal time period of admission for severely burned patients and find out the possible reasons for it. METHOD: 185 victims to the Kunshan factory aluminum dust explosion accident, which happened on August 2nd, 2014, were studied. The optimal cutpoint for continuous variables in survival models was determined by means of the maximally selected rank statistic. Univariate and multivariate analyses were further conducted to verify that admission time was not a risk factor for sepsis. Subgroup analyses were performed to find out possible contributing factors for the result. RESULT: The cutoff point for admission time was determined as seven hours, which was supported by the survival curve (p < 0.001). Multivariate analysis showed that, in our study population, delayed admission time was not a risk factor for sepsis (HR = 0.610, 95 %CI = 0.415 - 0.896, p = 0.012). Subgroup analyses showed that "Tracheotomy before admission" (p = 0.002), "Whole blood transfusion" (p < 0.001), "Hemodynamic instability before admission" (p = 0.02), "Has a burn department in the hospital" (p = 0.009), "Has a burn ICU in the hospital" (p < 0.001), "Acute heart failure (AHF)" (p = 0.05), "acute respiratory distress syndrome (ARDS)" (p = 0.05) and "GI bleeding" (p = 0.04) were all statistically significant. CONCLUSION: In our study population, we found that delayed admission time was not a risk factor associated with a reduced incidence of sepsis among severely burned patients. This might be attributed to variations in prehospital treatments (whole blood transfusion and tracheotomy), whether the hospital had a burn department/ICU, and certain complications (AHF, ARDS and GI bleeding). It can be inferred that early prehospital care plays a crucial role in reducing sepsis risk among severe burn patients.


Asunto(s)
Transfusión Sanguínea , Quemaduras , Sepsis , Tiempo de Tratamiento , Humanos , Quemaduras/terapia , Sepsis/epidemiología , Sepsis/terapia , Sepsis/prevención & control , Masculino , China/epidemiología , Femenino , Estudios Retrospectivos , Adulto , Persona de Mediana Edad , Tiempo de Tratamiento/estadística & datos numéricos , Factores de Riesgo , Transfusión Sanguínea/estadística & datos numéricos , Servicios Médicos de Urgencia/estadística & datos numéricos , Factores de Tiempo , Análisis Multivariante , Adulto Joven , Explosiones , Admisión del Paciente/estadística & datos numéricos , Hospitalización/estadística & datos numéricos , Adolescente , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/epidemiología , Síndrome de Dificultad Respiratoria/etiología
5.
Cell Biosci ; 14(1): 33, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38462627

RESUMEN

BACKGROUND: Malignant mesothelioma is a type of infrequent tumor that is substantially related to asbestos exposure and has a terrible prognosis. We tried to produce a fibroblast differentiation-related gene set for creating a novel classification and prognostic prediction model of MESO. METHOD: Three databases, including NCBI-GEO, TCGA, and MET-500, separately provide single-cell RNA sequencing data, bulk RNA sequencing profiles of MESO, and RNA sequencing information on bone metastatic tumors. Dimensionality reduction and clustering analysis were leveraged to acquire fibroblast subtypes in the MESO microenvironment. The fibroblast differentiation-related genes (FDGs), which were associated with survival and subsequently utilized to generate the MESO categorization and prognostic prediction model, were selected in combination with pseudotime analysis and survival information from the TCGA database. Then, regulatory network was constructed for each MESO subtype, and candidate inhibitors were predicted. Clinical specimens were collected for further validation. RESULT: A total of six fibroblast subtypes, three differentiation states, and 39 FDGs were identified. Based on the expression level of FDGs, three MESO subtypes were distinguished in the fibroblast differentiation-based classification (FDBC). In the multivariate prognostic prediction model, the risk score that was dependent on the expression level of several important FDGs, was verified to be an independently effective prognostic factor and worked well in internal cohorts. Finally, we predicted 24 potential drugs for the treatment of MESO. Moreover, immunohistochemical staining and statistical analysis provided further validation. CONCLUSION: Fibroblast differentiation-related genes (FDGs), especially those in low-differentiation states, might participate in the proliferation and invasion of MESO. Hopefully, the raised clinical subtyping of MESO would provide references for clinical practitioners.

6.
Int J Surg ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963751

RESUMEN

BACKGROUND: Burn injuries with ≥70% total body surface area (TBSA) are especially acute and life-threatening, leading to severe complications and terrible prognosis, while a powerful model for prediction of overall survival (OS) is lacked. The objective of this study is to identify prognostic factors for the OS of patients with burn injury ≥70% TBSA, construct and validate a feasible predictive model. MATERIALS AND METHODS: Patients diagnosed with burns ≥70% TBSA admitted and treated between 2010 and 2020 in our hospital were included. A cohort of the patients from the Kunshan explosion were assigned as the validation set. The Chi-square test and K-M survival analysis were conducted to identify potential predictors for OS. Then, multi-variate Cox regression analysis was performed to identify the independent factors. Afterwards, we constructed a nomogram to predict OS probability. Finally, the Kunshan cohort was applied as an external validation set. RESULTS: Gender, the percentage of third- and fourth-degree burn as well as organ dysfunction were identified as significant independent factors. A nomogram only based on the factors of the individuals was built and evidenced to have promising predictive accuracy, accordance, and discrimination by both internal and external validation. CONCLUSIONS: This study recognized significant influencing factors for the OS of patients with burns ≥70% TBSA. Furthermore, our nomogram proved to be an effective tool for doctors to quickly evaluate patients' outcomes and make appropriate clinical decisions at an early stage of treatment.

7.
Front Med (Lausanne) ; 11: 1299805, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39144657

RESUMEN

Background: Study engagement is regarded important to medical students' physical and mental wellbeing. However, the relationship between learning environment of medical schools and the study engagement of medical students was still unclear. This study was aimed to ascertain the positive effect of learning environment in study engagement. Methods: We collected 10,901 valid questionnaires from 12 medical universities in China, and UWES-S was utilized to assess the study engagement levels. Then Pearson Chi-Square test and Welch's ANOVA test were conducted to find the relationship between study engagement and learning environment, and subgroup analysis was used to eradicate possible influence of confounding factors. After that, a multivariate analysis was performed to prove learning environment was an independent factor, and we constructed a nomogram as a predictive model. Results: With Pearson Chi-Square test (p < 0.001) and Welch's ANOVA test (p < 0.001), it proved that a good learning environment contributed to a higher mean of UWES scores. Subgroup analysis also showed statistical significance (p < 0.001). In the multivariate analysis, we could find that, taking "Good" as reference, "Excellent" (OR = 0.329, 95%CI = 0.295-0.366, p < 0.001) learning environment was conducive to one's study engagement, while "Common" (OR = 2.206, 95%CI = 1.989-2.446, p < 0.001), "Bad" (OR = 2.349, 95%CI = 1.597-3.454, p < 0.001), and "Terrible" (OR = 1.696, 95%CI = 1.015-2.834, p = 0.044) learning environment only resulted into relatively bad study engagement. Depending on the result, a nomogram was drawn, which had predictive discrimination and accuracy (AUC = 0.680). Conclusion: We concluded that learning environment of school was an independent factor of medical student's study engagement. A higher level of learning environment of medical school came with a higher level of medical students' study engagement. The nomogram could serve as a predictive reference for the educators and researchers.

8.
J Am Chem Soc ; 135(4): 1201-4, 2013 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-23317479

RESUMEN

Two kinds of boron and nitrogen co-doped carbon nanotubes (CNTs) dominated by bonded or separated B and N are intentionally prepared, which present distinct oxygen reduction reaction (ORR) performances. The experimental and theoretical results indicate that the bonded case cannot, while the separated one can, turn the inert CNTs into ORR electrocatalysts. This progress demonstrates the crucial role of the doping microstructure on ORR performance, which is of significance in exploring the advanced C-based metal-free electrocatalysts.


Asunto(s)
Boro/química , Nanotubos de Carbono/química , Nitrógeno/química , Oxígeno/química , Oxidación-Reducción , Teoría Cuántica
9.
Nanomaterials (Basel) ; 13(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36903763

RESUMEN

CNTs and CNT-MgO, CNT-MgO-Ag, and CNT-MgO-Ag-BaO nanocomposites were grown on alloy substrates using an electrophoretic deposition method and their field emission (FE) and hydrogen sensing performances were investigated. The obtained samples were characterized by SEM, TEM, XRD, Raman, and XPS characterizations. The CNT-MgO-Ag-BaO nanocomposites showed the best FE performance with turn-on and threshold fields of 3.32 and 5.92 V.µm-1, respectively. The enhanced FE performances are mainly attributed to the reductions of the work function, and the enhancement of the thermal conductivity and emission sites. The current fluctuation of CNT-MgO-Ag-BaO nanocomposites was only 2.4% after a 12 h test at the pressure of 6.0 × 10-6 Pa. In addition, for the hydrogen sensing performances, the CNT-MgO-Ag-BaO sample showed the best increase in amplitude of the emission current among all the samples, with the mean IN increases of 67%, 120%, and 164% for 1, 3, and 5 min emissions, respectively, under the initial emission currents of about 1.0 µA.

10.
Front Genet ; 14: 1120500, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968603

RESUMEN

Background: The signal transducer and activator of transcription (STAT) gene family have been widely found to regulate cell proliferation, differentiation, apoptosis, and angiogenesis through complex signaling pathways, and thus impacting tumor formation and development in different types of tumor. However, the roles of STATs on prognostic prediction and therapeutic guidance in pan-cancer remain unexplored. Materials and Methods: The dataset of 33 types of TCGA tumor, para-carcinoma and normal tissues, was obtained from the UCSC Xena database, including the gene expression profiles in the formats of FPKM value, demographic characteristics, clinical information, and survival data of STATs. Differential expression and co-expression analyses, WGCNA, clinical relevance analysis, immune subtype analysis, tumor stemness analysis, tumor purity analysis, immune infiltration analysis, immunotherapy related analysis, tumor mutation related analysis, and drug sensitivity analysis were performed by R software. Results: Differential expression of STAT1 was found between normal and BRCA tissues (p < 0.001, log2FC = 0.895). Additionally, the strongest correlation among STATs lied between STAT1 and STAT2 (correlation coefficient = 0.6). Moreover, high expression levels of STAT1 (p = 0.031) were revealed to be notably correlated with poor prognosis in KIRP. In addition, STAT1 expressed the highest value in immune subtypes C1, C2, C3, and C6 in LUAD. What's more, strong negative correlations were demonstrated between expression of STAT6 and mDNAss and mRNAss of TGCT. Additionally, STAT4 expression was characterized to be significantly negatively correlated with tumor purity of the majority of cancer types. Moreover, STAT1 and STAT3 were shown to be generally high-expressed in pan-cancer myeloid cells, and STATs all had positive correlation with the infiltration of the majority of immune cells. In addition, STATs were revealed to be closely linked with immunotherapy response. What's more, STAT4 expression was identified to have a strong negative correlation with TMB value in DLBC. Last but not least, positive correlations were accessed between STAT5 and sensitivity of Nelarabine (cor = 0.600, p < 0.001). Conclusion: In the present study, we identified STATs as biomarkers for prognostic prediction and therapeutic guidance in pan-cancer. Hopefully our findings could provide a valuable reference for future STATs research and clinical applications.

11.
Front Immunol ; 14: 1067830, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875117

RESUMEN

Background: Rheumatism covers a wide range of diseases with complex clinical manifestations and places a tremendous burden on humans. For many years, our understanding of rheumatism was seriously hindered by technology constraints. However, the increasing application and rapid advancement of sequencing technology in the past decades have enabled us to study rheumatism with greater accuracy and in more depth. Sequencing technology has made huge contributions to the field and is now an indispensable component and powerful tool in the study of rheumatism. Methods: Articles on sequencing and rheumatism, published from 1 January 2000 to 25 April 2022, were retrieved from the Web of Science™ (Clarivate™, Philadelphia, PA, USA) database. Bibliometrix, the open-source tool, was used for the analysis of publication years, countries, authors, sources, citations, keywords, and co-words. Results: The 1,374 articles retrieved came from 62 countries and 350 institutions, with a general increase in article numbers during the last 22 years. The leading countries in terms of publication numbers and active cooperation with other countries were the USA and China. The most prolific authors and most popular documents were identified to establish the historiography of the field. Popular and emerging research topics were assessed by keywords and co-occurrence analysis. Immunological and pathological process in rheumatism, classification, risks and susceptibility, and biomarkers for diagnosis were among the hottest themes for research. Conclusions: Sequencing technology has been widely applied in the study of rheumatism and propells research in the area of discovering novel biomarkers, related gene patterns and physiopathology. We suggest that further efforts be made to advance the study of genetic patterns related to rheumatic susceptibility, pathogenesis, classification and disease activity, and novel biomarkers.


Asunto(s)
Enfermedades Reumáticas , Humanos , Bibliometría , China , Bases de Datos Factuales , Tecnología
12.
Microbiol Spectr ; : e0013523, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37768071

RESUMEN

Gut microbiota can regulate many physiological processes within gastrointestinal tract and other distal sites. Dysbiosis may not only influence chronic diseases like the inflammatory bowel disease (IBD), metabolic disease, tumor and its therapeutic efficacy, but also deteriorate acute injuries. This article aims to review the documents in this field and summarize the research hotspots as well as developing processes. Gut microbiota and immune microenvironment-related documents from 1976 to 2022 were obtained from the Web of Science Core Collection database. Bibliometrics was used to assess the core authors and journals, most contributive countries and affiliations together with hotspots in this field and keyword co-occurrence analysis. Data were visualized to help comprehension. Nine hundred and twelve documents about gut microbiota and immune microenvironment were retrieved, and the annual publications increased gradually. The most productive author, country, and affiliation were "Zitvogel L," USA and "UNIV TEXAS MD ANDERSON CANC CTR," respectively. FRONTIERS IN IMMUNOLOGY, CANCERS, and INTERNATIONAL JOURNAL OF MOLECULAR SCIENCE were the periodicals with most publications. Keyword co-occurrence analysis identified three clusters, including gut microbiota, inflammation, and IBD. Combined with the visualized analysis of documents and keyword co-occurrence as well as literature reading, we recognized three key topics of gut microbiota: cancer and therapy; immunity, inflammation and IBD; acute injuries and metabolic diseases. This article revealed researches on gut microbiota and immune microenvironment were growing. More attention should be given to the latest hotspots like gut microbiota, inflammation, IBD, cancer and immunotherapy, acute traumas, and metabolic diseases.IMPORTANCEGut microbiota can regulate many physiological processes within gastrointestinal tract and other distal sites. Dysbiosis may not only influence chronic diseases like inflammatory bowel disease (IBD), metabolic disease, tumor and its therapeutic efficacy, but also deteriorate acute injuries. While the application of bibliometrics in the field of gut microbiota and immune microenvironment still remains blank, which focused more on the regulation of the gut microbiota on the immune microenvironment of different kinds of diseases. Here, we intended to review and summarize the presented documents in gut microbiota and immune microenvironment field by bibliometrics. And we revealed researches on gut microbiota and immune microenvironment were growing. More attention should be given to the latest hotspots like gut microbiota, inflammation, IBD, cancer and immunotherapy, acute traumas, and metabolic diseases.

13.
Nanomaterials (Basel) ; 12(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35159920

RESUMEN

Multi-walled carbon nanotubes (MWNTs) were grown directly on a metal substrate with the assistance of Pt using a chemical vapor deposition method. In addition, the growth mechanism of Pt-assisted catalytic CNT was discussed. MWNTs were characterized by SEM, TEM, AFM, Raman, and EDS, and the field emission (FE) properties were investigated, comparing with the direct grown MWNTs. The results showed that CNTs could not been synthesized by Pt particles alone under the experimental condition, but Pt may accelerate the decomposition of the carbon source gas, i.e., assisting MWNT growth with other catalysts. The Pt-assisted MWNTs were longer with larger diameters of around 80 nm and possessed better structural qualities with very few catalyst particles inside. Improved field emission properties were demonstrated for the Pt-assisted MWNTs with lower turn-on fields (for 0.01 mA·cm-2 current density) of 2.0 V·µm-1 and threshold field (for 10 mA·cm-2 current density) of 3.5 V·µm-1, as well as better stability under a long-term test of 80 h (started at 3.0 mA for the Pt-assisted emitter and 3.25 mA for the direct grown emitter). This work demonstrated a promising approach to develop high performance CNT field emitters for device applications.

14.
Front Mol Neurosci ; 15: 1023692, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36385766

RESUMEN

Background: Spinal cord injury (SCI) is a severe disease with motor and sensory function being destroyed, which leads to a poor prognosis and a serious financial burden. It is urgent to figure out the molecular and pathological mechanisms of SCI to develop feasible therapeutic strategies. This article aims to review documents focused on gene expression in SCI and summarize research hotspots and the development process in this field. Methods: Publications of SCI-related studies from 2000 to 2022 were retrieved from the Web of Science Core Collection database. Biblioshiny was used to evaluate the research performance, core authors, journals and contributed countries, together with trend topics, hotspots in the field, and keyword co-occurrence analysis. Visualized images were obtained to help comprehension. Results: Among 351 documents, it was found that the number of annual publications increased in general. The most productive country was China, followed by the United States with the highest influence and the most international cooperation. Plos One was the journal of the maximum publications, while Journal of Neuroscience was the most influential one. According to keyword co-occurrence and trend topics analysis, these articles mainly focused on molecular and pathological mechanisms as well as novel therapies for SCI. Neuropathic pain, axonal regeneration and messenger RNA are significant and promising research areas. Conclusion: As the first bibliometric study focused on gene expression in SCI, we demonstrated the evolution of the field and provided future research directions like mechanisms and treatments of SCI with great innovativeness and clinical value. Further studies are recommended to develop more viable therapeutic methods for SCI.

15.
Front Microbiol ; 13: 1074003, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699603

RESUMEN

Background: Rheumatic diseases (RD) are a group of multi-system inflammatory autoimmune diseases whose causes are still under study. In the past few decades, researchers have found traces of the association between rheumatic diseases and intestinal microbiota, which can partially explain the pathogenesis of rheumatic diseases. We aimed to describe the research trend and main divisions on how gut flora interreacts with rheumatic diseases, and discussed about the possible clinical applications. Methods: We analyzed bibliometric data from the Web of Science core collection (dated 15th May 2022). Biblioshiny R language software packages (bibliometrix) were used to obtain the annual publication and citations, core sources according to Bradford's law, and country collaboration map. We designed and verified the keyword co-occurrence network and strategic diagram with the help of VOSviewer and CiteSpace, subdivided the research topic into several themes and identified research dimensions. The tables of most local cited documents and core sources were processed manually. Furthermore, the Altmetric Attention Score and the annual Altmetric Top 100 were applied to analyze the annual publication and citation. Results: From a total of 541 documents, we found that the overall trend of annual publication and citation is increasing. The major research method is to compare the intestinal microbial composition of patients with certain rheumatic disease and that of the control group to determine microbial alterations related to the disease's occurrence and development. According to Bradford's law, the core sources are Arthritis and Rheumatology, Annals of the Rheumatic Diseases, Current Opinion in Rheumatology, Nutrients, Rheumatology, and Journal of Rheumatology. Since 1976, 101 countries or regions have participated in studies of rheumatology and intestinal microbes. The United States ranks at the top and has the broadest academic association with other countries. Five themes were identified, including the pivotal role of inflammation caused by intestinal bacteria in the rheumatic pathogenesis, the close relationship between rheumatic diseases and inflammatory bowel disease, immunoregulation mechanism as a mediator of the interaction between rheumatic diseases and gut flora, dysbiosis and decreased diversity in intestine of patients with rheumatic diseases, and the influence of oral flora on rheumatic diseases. Additionally, four research dimensions were identified, including pathology, treatment, disease, and experiments. Conclusion: Studies on rheumatic diseases and the intestinal microbiota are growing. Attention should be paid to the mechanism of their interaction, such as the microbe-immune-RD crosstalk. Hopefully, the research achievements can be applied to diseases' prevention, diagnosis, and treatment, and our work can contribute to the readers' future research.

16.
Nanomaterials (Basel) ; 9(5)2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-31064064

RESUMEN

MnO2-MWNT-Ni foam supercapacitor electrodes were developed based on directly grown multiwalled carbon nanotubes (MWNTs) and hydrothermal MnO2 nanostructures on Ni foam substrates. The electrodes demonstrated excellent electrochemical and battery properties. The charge transfer resistance dropped 88.8% compared with the electrode without MWNTs. A high specific capacitance of 1350.42 F·g-1 was reached at the current density of 6.5 A·g-1. The electrode exhibited a superior rate capability with 92.5% retention in 25,000 cycles. Direct MWNT growth benefits the supercapacitor application for low charge transfer resistance and strong MWNT-current collector binding.

17.
Nanomaterials (Basel) ; 9(10)2019 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-31614756

RESUMEN

Carbon nanotube-Graphene (CNT-Gr) hybrids were prepared on stainless steel substrates by the electrophoretic deposition (EPD) to make the thermo-electrochemical cell (TEC) electrodes. The as-obtained TEC electrodes were investigated by the SEM, XRD, Raman spectroscopy, tensile, and surface resistance tests. These hybrid electrodes exhibited significant improved TEC performances compared to the pristine CNT electrode. In addition, these hybrid electrodes could be optimized by tuning the contents of the graphene in the hybrids, and the CNT-Gr-0.1 hybrid electrode showed the best TEC performance with the current density of 62.8 A·m-2 and the power density of 1.15 W·m-2, 30.4% higher than the CNT electrode. The enhanced TEC performance is attributed to improvements in the electrical and thermal conductivities, as well as the adhesion between the CNT-Gr hybrid and the substrate. Meanwhile, the relative conversion efficiency of the TECs can reach 1.35%. The investigation suggests that the growth of CNT-Gr hybrid electrodes by the EPD technique may offer a promising approach for practical applications of the carbon nanomaterial-based TEC electrodes.

18.
Nanomicro Lett ; 8(3): 240-246, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-30460283

RESUMEN

Drawbacks of low efficiency and high cost of the electrode materials have restricted the wide applications of the thermo-electrochemical cells (TECs). Due to high specific areas and electrical conductivities, the low cost multi-walled carbon nanotubes (MWNTs) are promising alternative electrode materials. In this work, the MWNT films of up to 16 cm2 were synthesized on stainless steel substrates by the electrophoretic deposition (EPD) to make the thermo-electrochemical electrodes. MWNT electrodes based on TECs were characterized by cyclic voltammetry and the long-term stability tests with the potassium ferri/ferrocyanide electrolyte. The TECs reached the current density of 45.2 A m-2 and the maximum power density of 0.82 W m-2. The relative power conversion efficiency of the MWNT electrode is 50 % higher than that for the Pt electrode. Meanwhile, the TECs was operated continuously for 300 h without performance degradation. With the priorities of low cost and simple fabrication, EPD-based MWNT TECs may become commercially viable.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA