Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 569(7757): 537-541, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31068693

RESUMEN

The discovery of the quantum Hall effect (QHE)1,2 in two-dimensional electronic systems has given topology a central role in condensed matter physics. Although the possibility of generalizing the QHE to three-dimensional (3D) electronic systems3,4 was proposed decades ago, it has not been demonstrated experimentally. Here we report the experimental realization of the 3D QHE in bulk zirconium pentatelluride (ZrTe5) crystals. We perform low-temperature electric-transport measurements on bulk ZrTe5 crystals under a magnetic field and achieve the extreme quantum limit, where only the lowest Landau level is occupied, at relatively low magnetic fields. In this regime, we observe a dissipationless longitudinal resistivity close to zero, accompanied by a well-developed Hall resistivity plateau proportional to half of the Fermi wavelength along the field direction. This response is the signature of the 3D QHE and strongly suggests a Fermi surface instability driven by enhanced interaction effects in the extreme quantum limit. By further increasing the magnetic field, both the longitudinal and Hall resistivity increase considerably and display a metal-insulator transition, which represents another magnetic-field-driven quantum phase transition. Our findings provide experimental evidence of the 3D QHE and a promising platform for further exploration of exotic quantum phases and transitions in 3D systems.

2.
Phys Rev Lett ; 131(25): 256901, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38181334

RESUMEN

In two-dimensional antiferromagnets, we find that the mixed Berry curvature can be attributed as the geometrical origin of the nonreciprocal directional dichroism (NDD), which refers to the difference in light absorption between opposite propagation directions. This Berry curvature is closely related to the uniaxial strain in accordance with the symmetry constraint, leading to a highly tunable NDD, whose sign and strength can be tuned via strain direction. We choose the lattice model of MnBi_{2}Te_{4} as a concrete example. The coupling between mixed Berry curvature and strain also suggests the magnetic quadrupole of the Bloch wave packet as the macroscopic order parameter probed by the NDD in two dimensions, which is distinct from the multiferroic order P×M or the spin toroidal and quadrupole order within a unit cell in previous studies. Our work paves the way for the Berry-curvature engineering for optical nonreciprocity in two-dimensional antiferromagnets.

3.
Nano Lett ; 22(14): 5735-5741, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35850534

RESUMEN

Topological surface states are a new class of electronic states with novel properties, including the potential for annihilation between surface states from two topological insulators at a common interface. Here, we report the annihilation and creation of topological surface states in the SnTe/Crx(BiSb)2-xTe3 (CBST) heterostructures as evidenced by magneto-transport, polarized neutron reflectometry, and first-principles calculations. Our results show that topological surface states are induced in the otherwise topologically trivial two-quintuple-layers thick CBST when interfaced with SnTe, as a result of the surface state annihilation at the SnTe/CBST interface. Moreover, we unveiled systematic changes in the transport behaviors of the heterostructures with respect to changing Fermi level and thickness. Our observation of surface state creation and annihilation demonstrates a promising way of designing and engineering topological surface states for dissipationless electronics.

4.
Phys Rev Lett ; 129(3): 036801, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35905371

RESUMEN

Although much effort has been made to explore quantum anomalous Hall effect (QAHE) in both theory and experiment, the QAHE systems with tunable Chern numbers are yet limited. Here, we theoretically propose that NiAsO_{3} and PdSbO_{3}, monolayer transitional metal oxides, can realize QAHE with tunable Chern numbers via manipulating their magnetization orientations. When the magnetization lies in the x-y plane and all mirror symmetries are broken, the low-Chern-number (i.e., C=±1) phase emerges. When the magnetization exhibits nonzero z-direction component, the system enters the high-Chern-number (i.e., C=±3) phase, even in the presence of canted magnetization. The global band gap can approach the room-temperature energy scale in monolayer PdSbO_{3} (23.4 meV), when the magnetization is aligned to z direction. By using Wannier-based tight-binding model, we establish the phase diagram of magnetization induced topological phase transition. Our work provides a high-temperature QAHE system with tunable Chern number for the practical electronic application.

5.
Phys Rev Lett ; 128(7): 077001, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35244409

RESUMEN

The recently discovered kagome superconductors AV_{3}Sb_{5} exhibit tantalizing high-pressure phase diagrams, in which a new domelike superconducting phase emerges under moderate pressure. However, its origin is as yet unknown. Here, we carried out the high-pressure electrical measurements up to 150 GPa, together with the high-pressure x-ray diffraction measurements and first-principles calculations on CsV_{3}Sb_{5}. We find the new superconducting phase to be rather robust and inherently linked to the interlayer Sb2-Sb2 interactions. The formation of Sb2-Sb2 bonds at high pressure tunes the system from two-dimensional to three-dimensional and pushes the p_{z} orbital of Sb2 upward across the Fermi level, resulting in enhanced density of states and increase of T_{C}. Our work demonstrates that the dimensional crossover at high pressure can induce a topological phase transition and is related to the abnormal high-pressure T_{C} evolution. Our findings should apply for other layered materials.

6.
Phys Rev Lett ; 126(11): 117602, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33798358

RESUMEN

We study the quantum phase diagram of electrons on kagome lattice with half-filled lowest flat bands by considering the antiferromagnetic Heisenberg interaction J, and short-range Coulomb interaction V. In the weak J regime, we identify a fully spin-polarized phase. The presence of finite V drives a spontaneous chiral current, which makes the system an orbital Chern insulator by contributing an orbital magnetization. Such an out-of-plane orbital magnetization allows the presence of a Chern insulating phase independent of the spin orientation in contrast to the spin-orbit coupling induced Chern insulator that disappears with in-plane ferromagnetism constrained by symmetry. Such a symmetry difference provides a criterion to distinguish the physical origin of topological responses in kagome systems. The orbital Chern insulator is robust against small coupling J. By further increasing J, we find that the ferromagnetic topological phase is suppressed, which first becomes partially polarized and then enters a nonmagnetic phase with spin and charge nematicity. The frustrated flat band allows the spin and Coulomb interaction to play an essential role in determining the quantum phases.

7.
Phys Rev Lett ; 127(26): 266401, 2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35029485

RESUMEN

We report angle resolved photoemission experiments on a newly discovered family of kagome metals RV_{6}Sn_{6} (R=Gd, Ho). Intrinsic bulk states and surface states of the vanadium kagome layer are differentiated from those of other atomic sublattices by the real-space resolution of the measurements with a small beam spot. Characteristic Dirac cone, saddle point, and flat bands of the kagome lattice are observed. Our results establish the two-dimensional (2D) kagome surface states as a new platform to investigate the intrinsic kagome physics.

8.
Phys Rev Lett ; 124(16): 166804, 2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32383951

RESUMEN

We theoretically demonstrate that the second-order topological insulator with robust corner states can be realized in two-dimensional Z_{2} topological insulators by applying an in-plane Zeeman field. The Zeeman field breaks the time-reversal symmetry and thus destroys the Z_{2} topological phase. Nevertheless, it respects some crystalline symmetries and thus can protect the higher-order topological phase. By taking the Kane-Mele model as a concrete example, we find that spin-helical edge states along zigzag boundaries are gapped out by the Zeeman field whereas the in-gap corner state at the intersection between two zigzag edges arises, which is independent of the field orientation. We further show that the corner states are robust against the out-of-plane Zeeman field, staggered sublattice potentials, Rashba spin-orbit coupling, and the buckling of honeycomb lattices, making them experimentally feasible. Similar behaviors can also be found in the well-known Bernevig-Hughes-Zhang model.

9.
Nano Lett ; 17(7): 4013-4018, 2017 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-28534404

RESUMEN

Graphene is a promising material for designing next-generation electronic and valleytronic devices, which often demand the opening of a bandgap in the otherwise gapless pristine graphene. To date, several conceptually different mechanisms have been extensively exploited to induce bandgaps in graphene, including spin-orbit coupling and inversion symmetry breaking for monolayer graphene, and quantum confinement for graphene nanoribbons (GNRs). Here, we present a multiscale study of the competing gap opening mechanisms in a graphene overlayer and GNRs proximity-coupled to topological insulators (TIs). We obtain sizable graphene bandgaps even without inversion symmetry breaking and identify the Kekulé lattice distortions caused by the TI substrates to be the dominant gap opening mechanism. Furthermore, Kekulé distorted armchair GNRs display intriguing nonmonotonous gap dependence on the nanoribbon width, resulting from the coexistence of quantum confinement, edge passivation, and Kekulé distortions. The present study offers viable new approaches for tunable bandgap engineering in graphene and GNRs.

11.
Ann Hematol ; 96(2): 279-288, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27864604

RESUMEN

This study compared 6-year follow-up data from patients undergoing reduced-intensity conditioning (RIC) transplantation with an HLA-matched related donor (MRD), an HLA-matched unrelated donor (MUD), or an HLA-haploidentical donor (HID) for leukemia. Four hundred and twenty-seven patients from the China RIC Cooperative Group were enrolled, including 301 in the MRD, 79 in the HID, and 47 in the MUD groups. The conditioning regimen involved fludarabine combined with anti-lymphocyte globulin and cyclophosphamide. Graft-versus-host disease (GVHD) prophylaxis was administered using cyclosporin A (CsA) and mycophenolate mofetil (MMF). Four hundred and nineteen patients achieved stable donor chimerism. The incidence of stage II-IV acute GVHD in the HID group was 44.3 %, significantly higher than that in the MRD (23.6 %) and MUD (19.1 %) groups. The 1-year transplantation-related mortality (TRM) rates were 44.3, 17.6, and 21.3, respectively. Event-free survival (EFS) at 6 years in the HID group was 36.7 %, significantly lower than that of the MRD and MUD groups (59.1 and 66.0 %, P < 0.001 and P = 0.001, respectively). For advanced leukemia, the relapse rate of the HID group was 18.5 %, lower than that of the MRD group (37.5 %, P = 0.05), but the EFS at 6 years was 31.7 and 30.4 % (P > 0.05), respectively. RIC transplantation with MRD and MUD had similar outcome in leukemia which is better than that with HID. RIC transplantation with HID had lower relapsed with higher TRM and GVHD rate, particularly in advanced leukemias. RIC transplantation with MRD and MUD had similar outcomes in leukemia and they were better than those with HID. RIC transplantation with HID had a lower relapse rate but higher TRM and GVHD rates, particularly in cases of advanced leukemia.


Asunto(s)
Haplotipos/genética , Trasplante de Células Madre Hematopoyéticas/tendencias , Leucemia/mortalidad , Leucemia/terapia , Estadística como Asunto , Donante no Emparentado , Adolescente , Adulto , Anciano , Niño , China/epidemiología , Femenino , Trasplante de Células Madre Hematopoyéticas/mortalidad , Humanos , Leucemia/genética , Masculino , Persona de Mediana Edad , Mortalidad/tendencias , Estudios Retrospectivos , Estadística como Asunto/tendencias , Factores de Tiempo , Donantes de Tejidos , Trasplante Homólogo/mortalidad , Trasplante Homólogo/tendencias , Resultado del Tratamiento , Adulto Joven
12.
Rep Prog Phys ; 79(6): 066501, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27176924

RESUMEN

Topological phases with insulating bulk and gapless surface or edge modes have attracted intensive attention because of their fundamental physics implications and potential applications in dissipationless electronics and spintronics. In this review, we mainly focus on recent progress in the engineering of topologically nontrivial phases (such as [Formula: see text] topological insulators, quantum anomalous Hall effects, quantum valley Hall effects etc) in two-dimensional systems, including quantum wells, atomic crystal layers of elements from group III to group VII, and the transition metal compounds.

13.
Phys Rev Lett ; 117(5): 056802, 2016 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-27517785

RESUMEN

We theoretically investigate the localization mechanism of the quantum anomalous Hall effect (QAHE) in the presence of spin-flip disorders. We show that the QAHE stays quantized at weak disorders, then enters a Berry-curvature mediated metallic phase at moderate disorders, and finally goes into the Anderson insulating phase at strong disorders. From the phase diagram, we find that at the charge neutrality point although the QAHE is most robust against disorders, the corresponding metallic phase is much easier to be localized into the Anderson insulating phase due to the interchange of Berry curvatures carried, respectively, by the conduction and valence bands. In the end, we provide a phenomenological picture related to the topological charges to better understand the underlying physical origin of the QAHE Anderson localization.

14.
Phys Rev Lett ; 117(5): 056804, 2016 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-27517787

RESUMEN

The quantum anomalous Hall effect (QAHE) is a fundamental quantum transport phenomenon that manifests as a quantized transverse conductance in response to a longitudinally applied electric field in the absence of an external magnetic field, and it promises to have immense application potential in future dissipationless quantum electronics. Here, we present a novel kinetic pathway to realize the QAHE at high temperatures by n-p codoping of three-dimensional topological insulators. We provide a proof-of-principle numerical demonstration of this approach using vanadium-iodine (V-I) codoped Sb_{2}Te_{3} and demonstrate that, strikingly, even at low concentrations of ∼2% V and ∼1% I, the system exhibits a quantized Hall conductance, the telltale hallmark of QAHE, at temperatures of at least ∼50 K, which is 3 orders of magnitude higher than the typical temperatures at which it has been realized to date. The underlying physical factor enabling this dramatic improvement is tied to the largely preserved intrinsic band gap of the host system upon compensated n-p codoping. The proposed approach is conceptually general and may shed new light in experimental realization of high-temperature QAHE.

15.
Angew Chem Int Ed Engl ; 55(44): 13822-13827, 2016 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-27701817

RESUMEN

Low-energy density has long been the major limitation to the application of supercapacitors. Introducing topological defects and dopants in carbon-based electrodes in a supercapacitor improves the performance by maximizing the gravimetric capacitance per mass of the electrode. However, the main mechanisms governing this capacitance improvement are still unclear. We fabricated planar electrodes from CVD-derived single-layer graphene with deliberately introduced topological defects and nitrogen dopants in controlled concentrations and of known configurations, to estimate the influence of these defects on the electrical double-layer (EDL) capacitance. Our experimental study and theoretical calculations show that the increase in EDL capacitance due to either the topological defects or the nitrogen dopants has the same origin, yet these two factors improve the EDL capacitance in different ways. Our work provides a better understanding of the correlation between the atomic-scale structure and the EDL capacitance and presents a new strategy for the development of experimental and theoretical models for understanding the EDL capacitance of carbon electrodes.

16.
Phys Rev Lett ; 112(10): 106802, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24679320

RESUMEN

We find theoretically a new quantum state of matter-the valley-polarized quantum anomalous Hall state in silicene. In the presence of Rashba spin-orbit coupling and an exchange field, silicene hosts a quantum anomalous Hall state with Chern number C=2. We show that through tuning the Rashba spin-orbit coupling, a topological phase transition results in a valley-polarized quantum anomalous Hall state, i.e., a quantum state that exhibits the electronic properties of both the quantum valley Hall state (valley Chern number Cv=3) and quantum anomalous Hall state with C=-1. This finding provides a platform for designing dissipationless valleytronics in a more robust manner.

17.
Phys Rev Lett ; 112(11): 116404, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24702394

RESUMEN

We propose realizing the quantum anomalous Hall effect by proximity coupling graphene to an antiferromagnetic insulator that provides both broken time-reversal symmetry and spin-orbit coupling. We illustrate our idea by performing ab initio calculations for graphene adsorbed on the (111) surface of BiFeO3. In this case, we find that the proximity-induced exchange field in graphene is about 70 meV, and that a topologically nontrivial band gap is opened by Rashba spin-orbit coupling. The size of the gap depends on the separation between the graphene and the thin film substrate, which can be tuned experimentally by applying external pressure.

18.
Nat Commun ; 15(1): 4619, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816431

RESUMEN

Since the first report on single-layer MoS2 based transistor, rapid progress has been achieved in two-dimensional (2D) material-based atomically thin electronics, providing an alternative approach to solve the bottleneck in silicon device miniaturization. In this scenario, reliable contact between the metal electrodes and the subnanometer-thick 2D materials becomes crucial in determining the device performance. Here, utilizing the quasi-van der Waals (vdW) epitaxy of metals on fluorophlogopite mica, we demonstrate an all-stacking method for the fabrication of 2D devices with high-quality vdW contacts by mechanically transferring pre-deposited metal electrodes. This technique is applicable for complex device integration with sizes up to the wafer scale and is also capable of tuning the electric characteristics of the interfacial junctions by transferring selective metals. Our results provide an efficient, scalable, and low-cost technique for 2D electronics, allowing high-density device integration as well as a handy tool for fundamental research in vdW materials.

19.
Adv Mater ; 36(8): e2305763, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37811809

RESUMEN

Spin-polarized two-dimensional (2D) materials with large and tunable spin-splitting energy promise the field of 2D spintronics. While graphene has been a canonical 2D material, its spin properties and tunability are limited. Here, this work demonstrates the emergence of robust spin-polarization in graphene with large and tunable spin-splitting energy of up to 132 meV at zero applied magnetic fields. The spin polarization is induced through a magnetic exchange interaction between graphene and the underlying ferrimagnetic oxide insulating layer, Tm3 Fe5 O12 , as confirmed by its X-ray magnetic circular dichroism (XMCD). The spin-splitting energies are directly measured and visualized by the shift in their Landau-fan diagram mapped by analyzing the measured Shubnikov-de-Haas (SdH) oscillations as a function of applied electric fields, showing consistent fit with the first-principles and machine learning calculations. Further, the observed spin-splitting energies can be tuned over a broad range between 98 and 166 meV by field cooling. The methods and results are applicable to other 2D (magnetic) materials and heterostructures, and offer great potential for developing next-generation spin logic and memory devices.

20.
Nano Lett ; 12(6): 2936-40, 2012 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-22524401

RESUMEN

We demonstrate that the one-dimensional (1D) transport channels that appear in the gap when graphene nanoroads are embedded in boron nitride (BN) sheets are more robust when they are inserted at AB/BA grain boundaries. Our conclusions are based on ab initio electronic structure calculations for a variety of different crystal orientations and bonding arrangements at the BN/C interfaces. This property is related to the valley Hall conductivity present in the BN band structure and to the topologically protected kink states that appear in continuum Dirac models with position-dependent masses.


Asunto(s)
Compuestos de Boro/química , Grafito/química , Membranas Artificiales , Modelos Químicos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Simulación por Computador , Transporte de Electrón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA