Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Langmuir ; 39(12): 4394-4405, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36913721

RESUMEN

The development of a highly selective, simple, and rapid detection method for nitrofuran antibiotics (NFs) is of great significance for food safety, environmental protection, and human health. To meet these needs, in this work, cyan-color highly fluorescent N-doped graphene quantum dots (N-GQDs) were synthesized using cane molasses as the carbon source and ethylenediamine as the nitrogen source. The synthesized N-GQDs have an average particle size of 6 nm, a high fluorescence intensity with 9 times that of undoped GQDs, and a high quantum yield (24.4%) which is more than 6 times that of GQDs (3.9%). A fluorescence sensor based on N-GQDs for the detection of NFs was established. The sensor shows advantages of fast detection, high selectivity, and sensitivity. The limit of detection for furazolidone (FRZ) was 0.29 µM, the limit of quantification (LOQ) was 0.97 µM, and the detection range was 5-130 µM. The fluorescence quenching mechanism of the sensor was explored by fluorescence spectroscopy, UV-vis absorption spectroscopy, Stern-Volmer quenching constant, Zeta potential, UV-vis diffuse reflectance spectroscopy, and cyclic voltammetry. A fluorescence quenching mechanism of dynamic quenching synergized with photoinduced electron transfer was revealed. The developed sensor was also successfully applied for detecting FRZ in various real samples, and the results were satisfactory.


Asunto(s)
Grafito , Nitrofuranos , Puntos Cuánticos , Humanos , Grafito/química , Antibacterianos , Puntos Cuánticos/química , Bastones , Electrones , Melaza , Nitrógeno/química
2.
Environ Res ; 233: 116445, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37356523

RESUMEN

The catering industry's growth has resulted in cooking fume pollution becoming a major concern in people's lives. As a result, its removal has become a core research focus. Natural loofah is an ideal biofilm carrier, providing a conducive environment for microorganisms to grow. This study utilized natural loofah to fill domesticated activated sludge in a bioscrubber, forming biofilms that enhance the ability to purify cooking fume. This study found that the biomass of loofah biofilms per gram is 104.56 mg. The research also determined the removal efficiencies for oils, Non-methane total hydrocarbons (NMHC), PM2.5, and PM10 from cooking fumes, which were 91.53%, 67.53%, 75.25%, and 82.23%, respectively. The maximum elimination capacity for cooking fumes was found to be 20.7 g/(m3·h). Additionally, the study determined the kinetic parameters for the biodegradation of oils (Kc and Vmax) to be 4.69 mg L-1 and 0.026 h-1, respectively, while the enzyme activities of lipase and catalase stabilized at 75.50 U/mgprots and 67.95 U/mgprots. The microbial consortium identified in the biofilms belonged to the phylum Proteobacteria and consisted mainly of Sphingomonas, Mycobacterium, and Lactobacillus, among others.


Asunto(s)
Luffa , Aguas del Alcantarillado , Humanos , Aceites , Hidrocarburos , Gases , Culinaria
3.
Molecules ; 26(12)2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207001

RESUMEN

In this work, we designed and successfully synthesized an interconnected carbon nanosheet/MoS2/polyaniline hybrid (ICN/MoS2/PANI) by combining the hydrothermal method and in situ chemical oxidative polymerization. The as-synthesized ICNs/MoS2/PANI hybrid showed a "caramel treat-like" architecture in which the sisal fiber derived ICNs were used as hosts to grow "follower-like" MoS2 nanostructures, and the PANI film was controllably grown on the surface of ICNs and MoS2. As a LIBs anode material, the ICN/MoS2/PANI electrode possesses excellent cycling performance, superior rate capability, and high reversible capacity. The reversible capacity retains 583 mA h/g after 400 cycles at a high current density of 2 A/g. The standout electrochemical performance of the ICN/MoS2/PANI electrode can be attributed to the synergistic effects of ICNs, MoS2 nanostructures, and PANI. The ICN framework can buffer the volume change of MoS2, facilitate electron transfer, and supply more lithium inset sites. The MoS2 nanostructures provide superior rate capability and reversible capacity, and the PANI coating can further buffer the volume change and facilitate electron transfer.

4.
Luminescence ; 31(4): 972-7, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26573961

RESUMEN

Negatively charged bacteria combined with positively charged alkaline dye rhodamine 6G (Rh6G) in NaH2 PO4 -Na2 HPO4 buffer solution pH 7.4, by electrostatic interaction. The dyed bacteria exhibited a strong fluorescence peak at 552 nm and fluorescence intensity was directly linear to Escherichia coli (E. coli), Bacillus subtilis (B. subtilis) and Staphylococcus aureus (S. aureus) concentrations in the range of 7.06 × 10(4) to 3.53 × 10(7) , 4.95 × 10(5) to 2.475 × 10(8) and 32.5 to 16250 colony forming unit/mL (cfu/mL) respectively, with detection limits of 3.2 × 10(4) cfu/mL E. coli, 2.3 × 10(5) cfu/mL B. subtilis and 16 cfu/mL S. aureus, respectively. Samples were cultured for 12 h, after which the linear detection range for E. coli was 2 to 88 cfu/mL. This simple, rapid and sensitive method was used for the analysis of water and drinking samples. Copyright © 2015 John Wiley & Sons, Ltd.


Asunto(s)
Escherichia coli/química , Escherichia coli/aislamiento & purificación , Colorantes Fluorescentes/química , Rodaminas/química , Bacillus subtilis/química , Bacillus subtilis/aislamiento & purificación , Estructura Molecular , Espectrometría de Fluorescencia , Staphylococcus aureus/química , Staphylococcus aureus/aislamiento & purificación
5.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(7): 2059-65, 2016 Jul.
Artículo en Zh | MEDLINE | ID: mdl-30035882

RESUMEN

Near-infrared quantum dots have unique optical properties, such as high fluorescence quantum yield, long fluorescent life, tunable fluorescence emission wavelength, half peak width and large stokes shift, resisting light bleaching etc. The advantage of "near infrared biological window" gives them great potential application value in biological fluorescent tags, solar cells, quantization calculation, photocatalysis, chemical analysis, food detection, vivo imaging and other fields. At present, the luminescence mechanism research of near-infrared quantum dots is still not comprehensive enough. In this paper, the luminescent principle of three different types of near-infrared quantum dots is summarized, including core/shell structure quantum dots (CdTe/CdSe, CdSe/CdTe/ZnSe, etc), ternary quantum dots (Cu-In-Se, CuInS2, etc) and doped quantum dots (Cu∶InP, etc). The luminescence mechanism of Type Ⅱ core/shell structure is most likely to attribute to the interband recombination luminescence, the ternary structure of quantum dots light emitting mechanism is considered to be due to the intrinsic structure defects, and the luminescence mechanism of doped quantum dots is deemed to result from the impurity defects. The existing problems of near-infrared luminescent principle of quantum dots are also discussed and their development tendency is explored t in this review. A systematic study of luminescence mechanism of near-infrared quantum dots will not only help to understand the luminescent properties of near infrared quantum dots, but also contribute to improve the synthesis methods of quantum dots with similarly high quality.

6.
Nanomaterials (Basel) ; 14(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38869568

RESUMEN

In this study, nanoporous TiO2 with hierarchical micro/nanostructures was synthesized on a large scale by a facile one-step solvothermal method at a low temperature. A series of characterizations was performed and carried out on the as-prepared photocatalysts, which were applied to the degradation of the antibiotic tetracycline (TC). The results demonstrated that nanoporous TiO2 obtained at a solvothermal temperature of 100 °C had a spherical morphology with high crystallinity and a relatively large specific surface area, composed of a large number of nanospheres. The nanoporous TiO2 with hierarchical micro/nanostructures exhibited excellent photocatalytic degradation activity for TC under simulated sunlight. The degradation rate was close to 100% after 30 min of UV light irradiation, and reached 79% only after 60 min of visible light irradiation, which was much better than the photodegradation performance of commercial TiO2 (only 29%). Moreover, the possible intermediates formed during the photocatalytic degradation of TC were explored by the density functional theory calculations and HPLC-MS spectra. Furthermore, two possible degradation routes were proposed, which provided experimental and theoretical support for the photocatalytic degradation of TC. In this study, we provide a new approach for the hierarchical micro/nanostructure of nanoporous TiO2, which can be applied in industrial manufacturing fields.

7.
RSC Adv ; 14(27): 19124-19133, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38882481

RESUMEN

Cesium-based lead-free double perovskite materials (Cs2AgBiBr6) have garnered significant attention in the X-ray detection field due to their environment friendly characteristics. However, their substantial ion migration properties lead to large dark currents and detection limits in Cs2AgBiBr6-based X-ray detectors, restricting the detection performance of the device. In terms of process technology, ultrasonic spraying is more suitable than a spin-coating method for fabricating large-area, micron-scale perovskite thick films, with higher cost-effectiveness, which is crucial for X-ray detection. This work introduces a BA+ (BA+ = CH3CH2CH2CH2NH3 +, n-butyl) source into the precursor solution and employs ultrasonic spraying to fabricate quasi-two-dimensional structured polycrystalline (BA)2Cs9Ag5Bi5Br31 perovskite thick films, developing a low-cost, eco-friendly X-ray detector with low dark current density and low detection limit. Characterization results reveal that the ion migration activation energy of (BA)2Cs9Ag5Bi5Br31 reaches 419 meV, approximately 17% higher than that of traditional three-dimensional perovskites, effectively suppressing perovskite ion migration and subsequently reducing the dark current. The (BA)2Cs9Ag5Bi5Br31-based X-ray detectors exhibit high resistivity (about 1.75 × 1010 Ω cm), low dark current density (66 nA cm-2), minimal dark current drift (0.016 pA cm-1 s-1 V-1), and detection limit (138 nGyair s-1), holding considerable promise for applications in low-noise, low-dose X-ray detection.

8.
RSC Adv ; 14(14): 10104-10112, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38533104

RESUMEN

Selective electrooxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) is of great significance in the manufacture of fine chemicals, liquid fuels, pharmaceuticals, plastics, etc., but still suffers from the high potential input, resulting in high electricity consumption. Developing active, low-cost and stable electrocatalysts is crucial for this electrochemical reaction at low working potentials. Herein, a three-dimensional (3D) hierarchical Cu(OH)2@Ni3Co1-layered double hydroxide architecture with abundant oxygen vacancies (Vo) was synthesized by facile electrodeposition of Ni3Co1-LDH nanosheets on copper foam (CF) supported-Cu(OH)2 nanorods (CF/Cu(OH)2@Ni3Co1-LDH) for the selective electrooxidation of HMF to FDCA. The 3D hierarchical architecture of the Cu(OH)2 nanorod core loaded with Ni3Co1-LDH nanosheet shell facilitates the rapid transfer of charges and exposes more active sites. The synergistic effect of the core-shell nanoarray structure, atomic level dispersion of Ni and Co on LDH laminates, and rich Vo gives 98.12% conversion of HMF, 98.64% yield and 91.71% selectivity for FDCA at a low working potential of 1.0 V vs. RHE. In addition, CF/Cu(OH)2@Ni3Co1-LDH exhibits superior stability by maintaining 93.26% conversion of HMF, 93.65% yield and 91.57% selectivity of FDCA after eight successive cycles, showing the immense potential of utilizing electrochemical conversion for biomass.

9.
J Colloid Interface Sci ; 662: 183-191, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38341941

RESUMEN

Modulating the electronic structure of platinum (Pt) through a support is an important strategy for enhancing its electrocatalytic properties. In this work, to explore the impact of support electronegativity on Pt's catalytic activity for hydrogen evolution, we chose diverse metals with varying electronegativities that are stable in acidic solutions, such as titanium (Ti), molybdenum (Mo), and tungsten (W), as supports. Ti is the optimal support according to density functional theory (DFT) calculations. As expected, the Pt@Ti catalyst demonstrated remarkable efficiency in the hydrogen evolution reaction (HER), displaying a minimal overpotential of 13 mV at -10 mA cm-2, a Tafel slope of 34.5 mV dec-1, and sustained durability over 110 h in a 0.5 M H2SO4 solution. To unravel the metal-support interaction (MSI) between Pt and Ti, a comprehensive exploration encompassing both experimental investigations and DFT calculations was undertaken. The results elucidate that the outstanding HER performance of Pt@Ti stems from robust synergies forged between Pt and Ti atoms within the Ti support. This work not only furnishes a technique for producing electrocatalysts with superior efficiency and stability but also streamlines the process of choosing the most appropriate metal support. Moreover, it enhances comprehension of the interaction between Pt and the metal support.

10.
J Nanosci Nanotechnol ; 13(2): 970-5, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23646552

RESUMEN

Nano-Se/bamboo charcoal (BC) composites were prepared successfully by hydrothermal method. The composites were characterized by SEM, XRD, Atomic Absorption Spectroscopy (AAS) and Atomic fluorescence spectroscopy (AFS) analysis. The effects of the synthesized conditions on the morphologies of Se particles on BC were investigated. The results showed that the reaction time, the adding order of reagents and the concentration of hydrazine have much influence on the formation of nano-Se/BC composites. The application of composites on the keeping fresh of cutting rose flowers was also studied, the experiment results indicate that Nano-Se/BC composites have better effect on the keeping fresh of cutting rose flowers than single BC, Nano-Se, distilled water and commercial "flower food" nutrient solution, the florescence of cutting rose flowers is distinctly extend by Nano-Se/BC composites up to 48 and 24 days in winter and summer respectively. "Synergy effects" and "Delayed release capsule effects" were used to explain the mechanism of Nano-Se/BC composites on the keeping fresh of cutting rose flowers.

11.
Nanomaterials (Basel) ; 13(5)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36903760

RESUMEN

As anode material for sodium ion batteries (SIBs), biomass-derived hard carbon has attracted a great deal of attention from researchers because of its renewable nature and low cost. However, its application is greatly limited due to its low initial Coulomb efficiency (ICE). In this work, we employed a simple two-step method to prepare three different structures of hard carbon materials from sisal fibers and explored the structural effects on the ICE. It was determined that the obtained carbon material, with hollow and tubular structure (TSFC), exhibits the best electrochemical performance, with a high ICE of 76.7%, possessing a large layer spacing, a moderate specific surface area, and a hierarchical porous structure. In order to better understand the sodium storage behavior in this special structural material, exhaustive testing was performed. Combining the experimental and theoretical results, an "adsorption-intercalation" model for the sodium storage mechanism of the TSFC is proposed.

12.
ACS Appl Mater Interfaces ; 15(29): 35014-35023, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37459456

RESUMEN

Microplastics are sub-millimeter-sized fragments of plastics, which have been found in environments to a great extent. They are relatively new pollutants that are difficult to be degraded. They not only cause irreversible adverse effects on microorganisms, animals, and plants but also enter the human body through the food chain and affect human health. However, due to their small size, variety, and differences in physical and chemical properties of microplastics, traditional detection and identification still face challenges. This work provides a method for detecting and classifying microplastics in liquids using a liquid-solid triboelectric nanogenerator (LS-TENG) in combination with a deep learning model. The experiment showed that the type and content of microplastics in the liquid had a great effect on the contact electrification between the liquid and the perfluoroethylene-propylene copolymer. After adding polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, and polystyrene microplastics to the liquids, it was found that the type and content of different microplastics have a significant impact on the output voltage signal of the LS-TENG sensor. When the mass fraction of microplastics ranged from 0.025 to 0.25 wt %, the voltage output of the LS-TENG sensor had a linear relationship with the mass fraction of microplastics. Therefore, a method for quantitatively detecting the content of microplastics using the LS-TENG sensor has been established. Based on the LS-TENG output voltage signal, a convolutional neural network deep learning model was used to identify different types of labels, and high recognition accuracy was achieved. These are of great significance for expanding the application prospect of LS-TENG and realizing the detection of microplastics in liquids.

13.
Nanomaterials (Basel) ; 13(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38063698

RESUMEN

Hard carbon is regarded as one of the greatest potential anode materials for sodium-ion batteries (SIBs) because of its affordable price and large layer spacing. However, its poor initial coulombic efficiency (ICE) and low specific capacity severely restrict its practical commercialization in SIBs. In this work, we successfully constructed abundant oxygen-containing functional groups in hard carbon by using pre-oxidation anthracite as the precursor combined with controlling the carbonization temperature. The oxygen-containing functional groups in hard carbon can increase the reversible Na+ adsorption in the slope region, and the closed micropores can be conducive to Na+ storage in the low-voltage platform region. As a result, the optimal sample exhibits a high initial reversible sodium storage capacity of 304 mAh g-1 at 0.03 A g-1, with an ICE of 67.29% and high capacitance retention of 95.17% after 100 cycles. This synergistic strategy can provide ideas for the design of high-performance SIB anode materials with the intent to regulate the oxygen content in the precursor.

14.
Nanomaterials (Basel) ; 12(4)2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35215020

RESUMEN

In this paper, SiO2 aerogels were prepared by a sol-gel method. Using Ketjen Black (KB), Super P (SP) and Acetylene Black (AB) as a conductive agent, respectively, the effects of the structure and morphology of the three conductive agents on the electrochemical performance of SiO2 gel anode were systematically investigated and compared. The results show that KB provides far better cycling and rate performance than SP and AB for SiO2 anode electrodes, with a reversible specific capacity of 351.4 mA h g-1 at 0.2 A g-1 after 200 cycles and a stable 311.7 mA h g-1 at 1.0 A g-1 after 500 cycles. The enhanced mechanism of the lithium storage performance of SiO2-KB anode was also proposed.

15.
Methods Appl Fluoresc ; 10(2)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35168212

RESUMEN

A near-infrared (NIR) light-triggered release method for nitric oxide (NO) was developed utilizing core/shell NaYF4: Tm/Yb/Ca@NaGdF4: Nd/Yb up-conversion nanoparticles (UCNPs) bearing a mesoporous silica (mSiO2) shell loaded with the NO donor S-nitroso-N-acetyl-DL-penicillamine (SNAP). To avoid overheating in biological samples, Nd3+was chosen as a sensitizer, Yb3+ions as the bridging sensitizer, and Tm3+ions as UV-emissive activator while co-doping with Ca2+was done to enhance the luminescence of the activator Tm3+. NO release from SNAP was triggered by an NIR-UV up-conversion process, initiated by 808 nm light absorbed by the Nd3+ions. NO release was confirmed by the Griess method. Under 808 nm irradiation, the viability of the liver cancer cell line HepG2 significantly decreased with increasing UCNPs@mSiO2-SNAP concentration. For a UCNPs@mSiO2-SNAP concentration of 200µg ml-1, the cell survival probability was 47%. These results demonstrate that UCNPs@mSiO2-SNAP can induce the release of apoptosis-inducing NO by NIR irradiation.


Asunto(s)
Neoplasias Hepáticas , Nanopartículas , Apoptosis , Línea Celular , Humanos , Luminiscencia
16.
ACS Appl Mater Interfaces ; 14(49): 54716-54724, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36453536

RESUMEN

A simple rectangular-structured freestanding liquid-solid triboelectric nanogenerator (LS-TENG) was fabricated, which used fluorinated ethylene propylene (FEP) films and deionized water (DI) as friction materials. The LS-TENG can effectively convert mechanical energy into electrical energy under the extremely low-frequency shaking of 2 Hz and shows greatly reliable stability. The influence of liquid volume and units on the output performance of the LS-TENG was studied, and the mechanism of the triboelectric electrification process of the LS-TENG was analyzed by COMSOL Multiphysics software. The results show that friction materials, liquid types, and number of units have a great effect on the output performance of the LS-TENG. Under the optimized conditions, the designed array LS-TENG shows high output performance with the open-circuit voltage, short-circuit current, and transferred charge of 120 V, 3.9 µA, and 133 nC, respectively. The LS-TENG can be applied in capacitive storage, AC power, signal acquisition, and self-powered sensor. The multifunctional LS-TENG provides a potentially practical route for harvesting low-frequency mechanical energy in natural environments and enabling multifunctional applications.

17.
ACS Omega ; 6(44): 29609-29617, 2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34778632

RESUMEN

Rational construction of anode material architecture to afford excellent cycling stability, fast rate capacity, and large specific capacity is essential to promote further development of lithium-ion batteries in commercial applications. In this work, we propose a facile strategy to anchor ultrafine ß-Mo2C nanoparticles in N-doped porous carbon skeleton (ß-Mo2C@NC) using a scalable salt-template method. The well-defined and abundant hierarchical porous structure of ß-Mo2C@NC can not only significantly enhance the electron/ion transfer but also markedly increase the specific surface area to effectively expose the electrochemically accessible active sites. Besides, the N-doped carbon matrix can turn the d-orbital electrons of the Mo to boost the electron transportation as well as distribute active sites to buffer the volume change of Mo2C and provide conductive pathways during discharge/charge cycles. As a result, the as-prepared ß-Mo2C@NC displays excellent lithium storage performance in terms of 1701.6 mA h g-1 at 0.1 A g-1 after 100 cycles and a large capacity of 816.47 mA h g-1 at 2.0 A g-1 after 500 cycles. The above results distinctly demonstrate that the ß-Mo2C@NC composite has potential application as anode materials in high-performance energy storage devices.

18.
Nanomaterials (Basel) ; 11(9)2021 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-34578681

RESUMEN

SiOx is considered as a promising anode for next-generation Li-ions batteries (LIBs) due to its high theoretical capacity; however, mechanical damage originated from volumetric variation during cycles, low intrinsic conductivity, and the complicated or toxic fabrication approaches critically hampered its practical application. Herein, a green, inexpensive, and scalable strategy was employed to fabricate NG/SiOx/NG (N-doped reduced graphene oxide) homogenous hybrids via a freeze-drying combined thermal decomposition method. The stable sandwich structure provided open channels for ion diffusion and relieved the mechanical stress originated from volumetric variation. The homogenous hybrids guaranteed the uniform and agglomeration-free distribution of SiOx into conductive substrate, which efficiently improved the electric conductivity of the electrodes, favoring the fast electrochemical kinetics and further relieving the volumetric variation during lithiation/delithiation. N doping modulated the disproportionation reaction of SiOx into Si and created more defects for ion storage, resulting in a high specific capacity. Deservedly, the prepared electrode exhibited a high specific capacity of 545 mAh g-1 at 2 A g-1, a high areal capacity of 2.06 mAh cm-2 after 450 cycles at 1.5 mA cm-2 in half-cell and tolerable lithium storage performance in full-cell. The green, scalable synthesis strategy and prominent electrochemical performance made the NG/SiOx/NG electrode one of the most promising practicable anodes for LIBs.

19.
J Biomater Sci Polym Ed ; 31(6): 729-746, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31928136

RESUMEN

A new bi-component poly(vinylalcohol)(PVA)/chitosan(CS)-poly(e-caprolactone)(PCL)/gelatin(Gel) multiscale electrospun scaffold was developed and analyzed in comparison with several other single scale systems. To mimic the native extracellular matrix in composition and structure and promote the migration of cells inside the scaffold, PVA/CS composite nanofibers (102 ± 52 nm) and PCL/Gelcomposite microfiber (2.5 ± 1.0 µm) were simultaneously electrospun from the two opposite syringes and mixed on a rotating mandrel to generate a bi-component multi-scale membrane. The bi-component membrane was crosslinked by glutaraldehyde vapor to maintain its fiber morphology in the wet stage. Morphology, shrinkage and spectroscopic of the electrospun membranes were characterized. To test the newly developed multiscale membrane, we seeded mesenchymal stem cells (MSCs) derived from rabbit onto five different fiber scaffolds (PVA, PVA/CS, PCL, PCL/Gel and PVA/CS-PCL/Gel) and compared cell adhesion and proliferation between different groups for 3 days using scanning electron microscopy, inverted microscope observations assay and MTT colorimetric. Cell culture results suggest that the incorporation of chitosan and gelatin could enhance cell adhesion and cell spreading in comparison to the performance of single component scaffolds of PVA and PCL. The multiscale PVA/CS-PCL/Gel membrane scaffolds provide a better environment to increase the growth, adhesion, and proliferation of cells. Scanning electron microscopy (SEM) observations showed that the cells were not only adhered well and proliferated on the surface of the scaffolds, but were also able to infiltrate inside the scaffold within 3 days of culture. MTT assay and inverted microscope observations also showed that the PVA/CS-PCL/Gel complex fibrous membrane exhibited better activity than other single component/scale systems scaffolds. Our results provide the underlying insights needed to guide the design of the native extracellular matrix.


Asunto(s)
Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Quitosano/química , Electricidad , Matriz Extracelular/metabolismo , Poliésteres/química , Alcohol Polivinílico/química , Animales , Adhesión Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Matriz Extracelular/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Conejos
20.
ACS Omega ; 5(12): 6763-6772, 2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32258911

RESUMEN

Poly(ethylene glycol) passivated graphene quantum dots (PEG-GQDs) were synthesized based on a green and effective strategy of the hydrothermal treatment of cane molasses. The prepared PEG-GQDs, with an average size of 2.5 nm, exhibit a brighter blue fluorescence and a higher quantum yield (QY) (up to approximately 21.32%) than the QY of GQDs without surface passivation (QY = 10.44%). The PEG-GQDs can be used to detect and quantify paramagnetic transition-metal ions including Fe3+, Cu2+, Co2+, Ni2+, Pb2+, and Mn2+. In the case of ethylenediaminetetraacetic acid (EDTA) solution as a masking agent, Fe3+ ions can be well selectively determined in a transition-metal ion mixture, following the lowest limit of detection (LOD) of 5.77 µM. The quenching mechanism of Fe3+ on PEG-GQDs belongs to dynamic quenching. Furthermore, Fe3+ in human serum can be successfully detected by the PEG-GQDs, indicating that the green prepared PEG-GQDs can be applied as a promising candidate for the selective detection of Fe3+ in clinics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA