Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Am Chem Soc ; 146(27): 18427-18439, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38946080

RESUMEN

Pseudomonas aeruginosa bacteria are becoming increasingly resistant against multiple antibiotics. Therefore, the development of vaccines to prevent infections with these bacteria is an urgent medical need. While the immunological activity of lipopolysaccharide O-antigens in P. aeruginosa is well-known, the specific protective epitopes remain unidentified. Herein, we present the first chemical synthesis of highly functionalized aminoglycoside trisaccharide 1 and its acetamido derivative 2 found in the P. aeruginosa serotype O5 O-antigen. The synthesis of the trisaccharide targets is based on balancing the reactivity of disaccharide acceptors and monosaccharide donors. Glycosylations were analyzed by quantifying the reactivity of the hydroxyl group of the disaccharide acceptor using the orbital-weighted Fukui function and dual descriptor. The stereoselective formation of 1,2-cis-α-fucosylamine linkages was achieved through a combination of remote acyl participation and reagent modulation. The simultaneous SN2 substitution of azide groups at C2' and C2″ enabled the efficient synthesis of 1,2-cis-ß-linkages for both 2,3-diamino-D-mannuronic acids. Through a strategic orthogonal modification, the five amino groups on target trisaccharide 1 were equipped with a rare acetamidino (Am) and four acetyl (Ac) groups. Glycan microarray analyses of sera from patients infected with P. aeruginosa indicated that trisaccharides 1 and 2 are key antigenic epitopes of the serotype O5 O-antigen. The acetamidino group is not an essential determinant of antibody binding. The ß-D-ManpNAc3NAcA residue is a key motif for the antigenicity of serotype O5 O-antigen. These findings serve as a foundation for the development of glycoconjugate vaccines targeting P. aeruginosa serotype O5.


Asunto(s)
Aminoglicósidos , Antígenos O , Pseudomonas aeruginosa , Trisacáridos , Pseudomonas aeruginosa/inmunología , Antígenos O/química , Antígenos O/inmunología , Trisacáridos/química , Trisacáridos/inmunología , Trisacáridos/síntesis química , Aminoglicósidos/química , Aminoglicósidos/síntesis química , Aminoglicósidos/inmunología
2.
Int J Mol Sci ; 24(20)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37894721

RESUMEN

The O-antigen is one of the outermost surface components of Gram-negative bacteria. Its large structural variation provides the molecular basis for bacterial serological diversity. Here, we established the structure of the O-antigen from an Escherichia coli strain, SD2019180, which appeared to be completely different from the known E. coli serogroups. The O-antigen tetrasaccharide biological repeating unit was identified as → 2)-[ß-d-GlcpA-(1 → 4)]-[α-d-Galp-(1 → 3)]-α-l-Fucp-(1 → 3)-α-d-GlcpNAc-(1 →. Furthermore, we analyzed the O-antigen gene cluster of SD2019180 and confirmed its role in O-antigen synthesis by using deletion and complementation experiments. Our findings indicate that SD2019180 is a novel serogroup of Escherichia coli.


Asunto(s)
Escherichia coli , Antígenos O , Escherichia coli/genética , Escherichia coli/química , Antígenos O/genética , Antígenos O/química , Serogrupo , Familia de Multigenes
3.
Molecules ; 28(20)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37894591

RESUMEN

Glycans on the surface of bacteria have diverse and essential biological functions and have widely been employed for treating various bacterial infectious diseases. Furthermore, these glycans comprise various functional groups, such as O-, N-, and carboxyl-modified, which significantly increase the diversity of glycan structures. These functional groups are not only crucial for glycans' structural identity but are also essential for their biological functions. Therefore, a clear understanding of the biological functions of these modified groups in corresponding bacterial glycans is crucial for their medical applications. Thus far, the activities of functional groups in some biomedical active carbohydrates have been elucidated. It has been shown that some functional groups are key constituents of biologically active bacterial glycans, while others are actually not essential and may even mask the functions of the glycans. This paper reviews the structures of naturally occurring side-chain functional groups in glycans located on the bacterial surface and their roles in immunological responses.


Asunto(s)
Polisacáridos Bacterianos , Polisacáridos , Polisacáridos/química
4.
J Am Chem Soc ; 144(46): 21068-21079, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36354960

RESUMEN

Shigella is the second most common etiologic pathogen responsible for childhood acute diarrhea. An anti-Shigella vaccine is still eagerly awaited due to the increasing drug resistance of this pathogen. The Shigella O-antigen is a promising vaccine target. To identify the immune epitopes of the glycan, the first total synthesis of Shigella dysenteriae serotype 10 O-antigen tetrasaccharide containing a (S)-4,6-O-pyruvyl ketal was completed. The 1,2-trans-ß-glycosylation & C2 epimerization and conformational locking strategies facilitated the construction of two 1,2-cis-ß-glycosidic linkages. The reactivities of both the glycosyl donor and acceptor were improved by adding electron-donating benzyl groups, enabling an efficient assembly of the tetrasaccharide. The (S)-4,6-O-pyruvyl ketal was introduced at the final stage due to its influence on the glycosylation stereospecificity and efficiency. In addition, (R)-4,6-O-pyruvylated and nonpyruvylated tetrasaccharides and three further fragments were synthesized. Glycan microarray screening revealed that the tetrasaccharide repeating unit is the key antigenic epitope of the O-antigen. Moreover, the (S)-4,6-O-pyruvyl ketal is an essential structural feature of this antigen for designing carbohydrate-based vaccines against S. dysenteriae serotype 10. The comparison of the (S)-4,6-O-pyruvylated glycan and its (R)-epimer will set an example for biological evaluation of other bacterial glycans containing pyruvyl ketals.


Asunto(s)
Antígenos O , Shigella dysenteriae , Antígenos O/química , Serogrupo , Secuencia de Carbohidratos , Oligosacáridos , Polisacáridos Bacterianos/química , Epítopos
5.
J Am Chem Soc ; 144(32): 14535-14547, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35939326

RESUMEN

Helicobacter pylori, listed as a human carcinogen by the Department of Health and Human Services, colonizes the gastric mucosa of more than half of the world's population. The individuals infected with H. pylori have a high risk to develop chronic gastritis, peptic ulcers, and even gastric cancer. The conserved core structure of H. pylori lipopolysaccharide (LPS) has been regarded as a promising candidate structure for development of a glycoconjugate vaccine targeting multiple serotypes. Here, we report a total synthesis of the core undecasaccharide of H. pylori LPS and its subunit antigens. The match and mismatch between the glycosyl donor and acceptor caused by the inert hydroxyl groups were addressed by a judicious choice of orthogonal protection strategies and glycosylation conditions. A combination of acyl remote participation and solvent effects has been applied for selective formation of the five 1,2-cis-glucosidic bonds. The high steric hindrance induced by the high carbon sugars and trinacriform architecture required that the core undecasaccharide was synthesized through a finely tuned linear assembly [2 + (1 + (3 + (1 + (1 + 3))))] rather than convergent strategies. An antigenicity evaluation using glycan microarrays showed that an α-(1 → 6)-glucan trisaccharide is recognized by IgG antibodies in sera of H. pylori-infected patients. The phosphate group of the inner core trisaccharide key epitope is very important for IgG recognition. These findings are an important step toward designing carbohydrate-based vaccines against H. pylori.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Humanos , Inmunoglobulina G , Lipopolisacáridos/química , Trisacáridos
6.
Acta Clin Croat ; 61(2): 193-197, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36818924

RESUMEN

The aim was to investigate detection of pulmonary alveolar lavage fluid tuberculosis DNA by real-time fluorescent polymerase chain reaction (RT-PCR) combined with clinical application of the sputum smear-negative pulmonary tuberculosis diagnosis with TB interferon-γ release assay (TB-IGRA). From October 2014 to October 2015, 632 outpatients and inpatients treated in our hospital were randomly selected, of which 459 patients as the research group managed with RT-PCR detection combined with TB-IGRA and 173 patients as the control group undergoing electronic bronchoscopy alveolar lavage fluid detection, with detection results statistically evaluated. The positive rate in the research group was 96.51%, i.e. significantly higher than that in the control group (66.47%), yielding a statistically significant difference (χ2=109.68, p=0.00). The true positive rate was 97.7% in the research group and 67.92% in the control group; the true positive rate was significantly higher in the research group patients as compared with the control group, yielding a statistically significant difference (χ2=112.04, p=0.00). The sensitivity and specificity, as well as Youden index were significantly higher in the research group as compared with the control group. In conclusion, TB DNA detection by RT-PCR combined with TB-IGRA is a very good method of diagnosing tuberculosis, and it can be implemented in clinical diagnosis of pulmonary tuberculosis.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Pulmonar , Tuberculosis , Humanos , Ensayos de Liberación de Interferón gamma/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Esputo , Tuberculosis/diagnóstico , Tuberculosis Pulmonar/diagnóstico , Sensibilidad y Especificidad , ADN
7.
Int J Mol Sci ; 22(23)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34884549

RESUMEN

The O-antigen is the outermost component of the lipopolysaccharide layer in Gram-negative bacteria, and the variation of O-antigen structure provides the basis for bacterial serological diversity. Here, we determined the O-antigen structure of an Escherichia coli strain, LL004, which is totally different from all of the E. coli serogroups. The tetrasaccharide repeating unit was determined as →4)-ß-d-Galp-(1→3)-ß-d-GlcpNAc6OAc(~70%)-(1→3)-ß-d-GalpA-(1→3)-ß-d-GalpNAc-(1→ with monosaccharide analysis and NMR spectra. We also characterized the O-antigen gene cluster of LL004, and sequence analysis showed that it correlated well with the O-antigen structure. Deletion and complementation testing further confirmed its role in O-antigen biosynthesis, and indicated that the O-antigen of LL004 is assembled via the Wzx/Wzy dependent pathway. Our findings, in combination, suggest that LL004 should represent a novel serogroup of E. coli.


Asunto(s)
Infecciones por Escherichia coli/microbiología , Escherichia coli/inmunología , Lipopolisacáridos/inmunología , Familia de Multigenes , Antígenos O/genética , Antígenos O/inmunología , Serogrupo , Secuencia de Carbohidratos , Escherichia coli/genética , Infecciones por Escherichia coli/sangre
8.
Angew Chem Int Ed Engl ; 59(32): 13362-13370, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32363752

RESUMEN

The development of glycoconjugate vaccines against Helicobacter pylori is challenging. An exact epitope of the H. pylori lipo-polysaccharide (LPS) O-antigens that contain Lewis determinant oligosaccharides and unique dd-heptoglycans has not yet been identified. Reported here is the first total synthesis of H. pylori serotype O6 tridecasaccharide O-antigen containing a terminal Ley tetrasaccharide, a unique α-(1→3)-, α-(1→6)-, and α-(1→2)-linked heptoglycan, and a ß-d-galactose connector, by an [(2×1)+(3+8)] assembly sequence. Seven oligosaccharides covering different portions of the entire O-antigen were prepared for immunological investigations with a particular focus on elucidation of the roles of the dd-heptoglycan and Ley tetrasaccharide. Glycan microarray analysis of sera from rabbits immunized with isolated serotype O6 LPS revealed a humoral immune response to the α-(1→3)-linked heptoglycan, a key motif for designing glycoconjugate vaccines for H. pylori serotype O6.


Asunto(s)
Helicobacter pylori/química , Antígenos O/química , Antígenos O/inmunología , Oligosacáridos/síntesis química , Oligosacáridos/inmunología , Animales , Secuencia de Carbohidratos , Inmunidad Humoral/inmunología , Inmunoglobulina G/inmunología , Análisis por Micromatrices , Conejos
9.
Angew Chem Int Ed Engl ; 59(46): 20529-20537, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-32734715

RESUMEN

The gut pathogen Clostridium bolteae has been associated with the onset of autism spectrum disorder (ASD). To create vaccines against C. bolteae, it is important to identify exact protective epitopes of the immunologically active capsular polysaccharide (CPS). Here, a series of C. bolteae CPS glycans, up to an octadecasaccharide, was prepared. Key to achieving the total syntheses is a [2+2] coupling strategy based on a ß-d-Rhap-(1→3)-α-d-Manp repeating unit that in turn was accessed by a stereoselective ß-d-rhamnosylation. The 4,6-O-benzylidene-induced conformational locking is a powerful strategy for forming a ß-d-mannose-type glycoside. An indirect strategy based on C2 epimerization of ß-d-quinovoside was efficiently achieved by Swern oxidation and borohydride reduction. Sequential glycosylation, and regioselective and global deprotection produced the disaccharide and tetrasaccharide, up to the octadecasaccharide. Glycan microarray analysis of sera from rabbits immunized with inactivated C. bolteae bacteria revealed a humoral immune response to the di- and tetrasaccharide, but none of the longer sequences. The tetrasaccharide may be a key motif for designing glycoconjugate vaccines against C. bolteae.


Asunto(s)
Trastorno Autístico/microbiología , Clostridiales/inmunología , Epítopos/inmunología , Polisacáridos/metabolismo , Secuencia de Carbohidratos , Clostridiales/metabolismo , Humanos , Polisacáridos/química
10.
J Am Chem Soc ; 140(8): 3120-3127, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29377682

RESUMEN

Plesiomonas shigelloides, a pathogen responsible for frequent outbreaks of severe travelers' diarrhea, causes grave extraintestinal infections. Sepsis and meningitis due to P. shigelloides are associated with a high mortality rate as antibiotic resistance increases and vaccines are not available. Carbohydrate antigens expressed by pathogens are often structurally unique and are targets for developing vaccines and diagnostics. Here, we report a total synthesis of the highly functionalized trisaccharide repeating unit 2 from P. shigelloides serotype 51 from three monosaccharides. A judicious choice of building blocks and reaction conditions allowed for the four amino groups adorning the sugar rings to be installed with two N-acetyl (Ac) groups, rare acetamidino (Am), and d-3-hydroxybutyryl (Hb) groups. The strategy for the differentiation of amino groups in trisaccharide 2 will serve well for the syntheses of other complex glycans.


Asunto(s)
Aminoglicósidos/síntesis química , Antígenos O/química , Plesiomonas/química , Trisacáridos/síntesis química , Aminoglicósidos/química , Conformación de Carbohidratos , Trisacáridos/química
11.
Chemistry ; 24(12): 2868-2872, 2018 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-29319212

RESUMEN

Helicobacter pylori, a widespread gastric bacterial pathogen that infects 90 % of the population in developing countries, causes chronic gastritis, peptic ulcers and gastric cancer. Battling H. pylori infection is a serious challenge due to the increased resistance to antibiotics and the lack of vaccines. The lipopolysaccharide covering the H. pylori cell-surface outer membrane is an attractive target for the development of a glycoconjugate vaccine. Here, we report a [3+5] convergent synthesis of an outer core octasaccharide of H. pylori employing just three orthogonally protected building blocks. A synergistic glycosylation strategy enables the creation of five pivotal 1,2-cis-α-glucosidic bonds consist of four types of linkages using just three monomers. This strategy can be expanded to many 1,2-cis-α-gluoside-containing oligosaccharides both in solution and solid phase.


Asunto(s)
Antibacterianos/uso terapéutico , Helicobacter pylori/química , Oligosacáridos/química , Glicosilación , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/patología , Humanos , Oligosacáridos/síntesis química , Neoplasias Gástricas/etiología
12.
J Food Sci Technol ; 52(2): 1032-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25694715

RESUMEN

Chinese-style sausage is a very popular meat product obtained from a mixture of chopped pork meat, lard, salt, spices, additives (nitrate, nitrite, and antioxidants) and/or starter cultures. The antioxidative effect of apple phenolic on lipid oxidation in Chinese-style sausage compared with that of butylated hydroxy toluene (BHT) and ursolic acid were studied. Lipid oxidation was assessed through determination of thiobarbituric acid-reactive substances (TBARs) and volatile aldehydes. The content and composition of fatty acids in phospholipid were evaluated. At the optimum addition level, apple phenolic (0.5 g·kg(-1) in total fat) was more effective at inhibiting lipid oxidation than BHT (0.15 g·kg(-1) in total fat) and ursolic acid (0.5 g·kg(-1) in total fat) in Chinese-style sausages during 120 days storage. Moreover, apple phenolic exhibited stronger phospholipid protective capacity than ursolic acid and BHT at the end of storage. This study reveals a potential application of apple phenolic to enhance the oxidation stability of meat products during long storage.

13.
Curr Opin Chem Biol ; 78: 102424, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168589

RESUMEN

O-Antigens and core oligosaccharides from bacterial lipopolysaccharides (LPS) are often structurally unique and immunologically active, have become attractive targets in the development of antibacterial vaccines. Structurally well-defined and pure oligosaccharides can be used in identifying protective epitopes of the carbohydrate antigens, which is important for the design of an effective vaccine. Here, the recent progress on chemical synthesis and immunological evaluation of glycans related to O-antigens and core oligosaccharides from bacterial LPS are summarized.


Asunto(s)
Lipopolisacáridos , Antígenos O , Oligosacáridos , Epítopos , Antibacterianos
14.
Org Lett ; 26(24): 5215-5219, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38861677

RESUMEN

Bacterial nonulosonic acids (NulOs), which feature a nine-carbon backbone, are associated with the biological functions of bacterial glycans. Here, an orthogonally protected 5-amino-7-azido-3,5,7,9-tetradeoxy-d-glycero-l-gluco-2-nonulosonic acid related to Fusobacterium nucleatum ATCC 23726 NulO was synthesized from N-acetylneuraminic acid with sequential performance of C5,7 azidation, C9 deoxygenation, C4 epimerization, and N5,7 differentiation. The C5 azido group in the obtained 5,7-diazido-NulO can be regioselectively reduced to differentiate the two amino groups.


Asunto(s)
Ácido N-Acetilneuramínico , Azúcares Ácidos , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/síntesis química , Estructura Molecular , Azúcares Ácidos/química , Azúcares Ácidos/síntesis química , Fusobacterium nucleatum/química , Azidas/química
15.
Org Lett ; 26(19): 4142-4146, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38717147

RESUMEN

Fusobacterium nucleatum, a colorectal-cancer-associated oncomicrobe, can trigger or accelerate numerous pathologies. We report the first synthesis of a conjugation-ready disaccharide containing six amino groups from F. nucleatum ATCC 23726 O-antigen. Rare 2,3-diamido-d-glucuronic acid amide and 2-acetamido-4-amino-d-fucose were synthesized from d-glucosamine through configuration inversion, nucleophilic substitution, C6 oxidation, and C6 deoxygenation. A judicious choice of protecting groups and reaction conditions enabled the selective installation of N-acetyl, N-propanoyl, N-formyl, and carboxamido groups.


Asunto(s)
Fusobacterium nucleatum , Antígenos O , Fusobacterium nucleatum/química , Antígenos O/química , Estructura Molecular , Disacáridos/química , Disacáridos/síntesis química
16.
Fitoterapia ; 175: 105974, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663563

RESUMEN

Alhagi honey is derived from the secretory granules of Alhagi pseudoalhagi Desv., a leguminous plant commonly known as camelthorn. Modern medical research has demonstrated that the extract of Alhagi honey possesses regulatory properties for the gastrointestinal tract and immune system, as well as exerts anti-tumor, anti-oxidative, anti-inflammatory, anti-bacterial, and hepatoprotective effects. The aim of this study was to isolate and purify oligosaccharide monomers (referred to as Mel) from camelthorn and elucidate their structural characteristics. Subsequently, the impact of Mel on liver injury induced by carbon tetrachloride (CCl4) in mice was investigated. The analysis identified the isolated oligosaccharide monomer (α-D-Glcp-(1 â†’ 3)-ß-D-Fruf-(2 â†’ 1)-α-D-Glcp), with the molecular formula C18H32O16. In a mouse model of CCl4-induced liver fibrosis, Mel demonstrated significant therapeutic effects by attenuating the development of fibrosis. Moreover, it enhanced anti-oxidant enzyme activity (glutathione peroxidase and superoxide dismutase) in liver tissues, thereby reducing oxidative stress markers (malondialdehyde and reactive oxygen species). Mel also improved serum albumin levels, lowered liver enzyme activities (aspartate aminotransferase and alanine aminotransferase), and decreased inflammatory factors (tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6). Immunohistochemistry, immunofluorescence, and western blotting analyses confirmed the ability of Mel to downregulate hepatic stellate cell-specific markers (collagen type I alpha 1 chain, alpha-smooth muscle actin, transforming growth factor-beta 1. Non-targeted metabolomics analysis revealed the influence of Mel on metabolic pathways related to glutathione, niacin, pyrimidine, butyric acid, and amino acids. In conclusion, the results of our study highlight the promising potential of Mel, derived from Alhagi honey, as a viable candidate drug for treating liver fibrosis. This discovery offers a potentially advantageous option for individuals seeking natural and effective means to promote liver health.


Asunto(s)
Miel , Cirrosis Hepática , Oligosacáridos , Animales , Ratones , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/inducido químicamente , Oligosacáridos/farmacología , Oligosacáridos/aislamiento & purificación , Oligosacáridos/química , Masculino , Fabaceae/química , Tetracloruro de Carbono , Hígado/efectos de los fármacos , Hígado/patología , Estructura Molecular , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/farmacología , Superóxido Dismutasa/metabolismo , Glutatión Peroxidasa/metabolismo , Malondialdehído/metabolismo
17.
Am J Transl Res ; 15(9): 5723-5729, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37854233

RESUMEN

OBJECTIVE: To investigate the clinical efficacy of Shu Fu Pai® Protein Short Peptides Beverage in the treatment of hypoalbuminemia in liver cirrhosis. METHODS: A retrospective analysis was conducted on 289 patients with liver cirrhosis and hypoalbuminemia who were admitted to Deyang People's Hospital between April 2021 and April 2023. Among them, 148 patients treated with Shu Fu Pai® Protein Short Peptides Beverage were assigned as an observation group and 141 patients treated with intravenous human albumin were the control group. Liver function, coagulation function before and after treatment, and complications after treatment were compared between the two groups. The patients whose albumin levels did not increase after treatment were counted, and the influencing factors were analyzed using univariate and multivariate analyses. RESULTS: After treatment, there was a significant improvement in liver function, serum albumin level, Child-Pugh score, inflammatory markers, and coagulation function in both groups (all P=0.001). However, no significant difference was found in the peripheral blood indicators between the two groups (P>0.05). Also, there was no significant difference in complications between the two groups (P=0.194). Logistic regression analysis showed that age, pre-treatment serum albumin level, disease type, and abnormal liver function markers were independent factors affecting the treatment outcome of hypoalbuminemia, and treatment regimen was not an influencing factor. CONCLUSION: Shu Fu Pai® Protein Short Peptides Beverage for hypoalbuminemia in liver cirrhosis is not inferior to intravenous human albumin for improving liver function, inflammatory markers, and coagulation function. The therapeutic effect on hypoproteinemia is independent of type of treatment regimen, which suggests that Shu Fu Pai® Protein Short Peptides Beverage is an effective treatment for hypoalbuminemia in liver cirrhosis, without an increased risk of complications.

18.
Medicine (Baltimore) ; 102(50): e36393, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38115323

RESUMEN

The aim of the present study was to analyze the clinical features, treatments, and short-term prognoses of 18 patients with novel coronavirus pneumonia (NCP) in order to provide reference for further clinical prevention and control of the epidemic. From January 29 to February 29, 2020, data from 18 patients with NCP who were positive for the 2019 novel coronavirus nucleic acid test were collected, and their clinical manifestations, laboratory tests, imaging features, and treatment protocols were analyzed retrospectively. From among the 18 patients with NCP, 9 (50%) were imported cases and 9 (50%) had contact histories with confirmed adult patients. Clinical classification was mainly of the normal type (16 cases, 88.9%). Fever and cough were common clinical symptoms, and the main laboratory indices were lymphocytopenia and leukocytopenia. The main imaging findings yielded ground-glass opacity in 12 cases (66.7%) and patchy opacity in 9 cases (50%). All 18 patients were treated with antiviral therapy and targeted treatment in accordance with their symptoms, returned negative nucleic acid tests (9-23 days) after their treatment, and were cured and discharged by March 5, 2020. During the early stages in Deyang, most patients with NCP were input cases; in the later stages, the main route of infection was close contact within the family. Close contact history in epidemiology, nucleic acid detection, and chest imaging were important references for diagnosis. Antiviral therapy resulted in good therapeutic effects. Adopting multi-departmental consultation and remote consultation in combination with traditional Chinese medicine treatment and psychological counseling may result in a good short-term prognosis.


Asunto(s)
COVID-19 , Ácidos Nucleicos , Adulto , Humanos , SARS-CoV-2 , Estudios Retrospectivos , Antivirales , China/epidemiología
19.
Chin J Nat Med ; 20(6): 401-420, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35750381

RESUMEN

Bacterial surface glycans perform a diverse and important set of biological roles, and have been widely used in the treatment of bacterial infectious diseases. The majority of bacterial surface glycans are decorated with diverse rare functional groups, including amido, acetamidino, carboxamido and pyruvate groups. These functional groups are thought to be important constituents for the biological activities of glycans. Chemical synthesis of glycans bearing these functional groups or their variants is essential for the investigation of structure-activity relationships by a medicinal chemistry approach. To date, a broad choice of synthetic methods is available for targeting the different rare functional groups in bacterial surface glycans. This article reviews the structures of naturally occurring rare functional groups in bacterial surface glycans, and the chemical methods used for installation of these groups.


Asunto(s)
Infecciones Bacterianas , Polisacáridos , Humanos , Polisacáridos/química , Relación Estructura-Actividad
20.
Chin J Nat Med ; 20(8): 633-640, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36031235

RESUMEN

The ribose and phosphorus contents in Haemophilus influenzae type b (Hib) capsular polysaccharide (CPS) are two important chemical indexes for the development and quality control of Hib conjugate vaccine. A quantitative 1H- and 31P-NMR method using a single internal standard was developed for simultaneous determination of ribose and phosphorus contents in Hib CPS. Hexamethylphosphoramide (HMPA) was successfully utilized as an internal standard in quantitative 1H-NMR method for ribose content determination. The ribose and phosphorus contents were found to be affected by the concentration of polysaccharide solution. Thus, 15-20 mg·L-1 was the optimal concentration range of Hib CPS in D2O solution for determination of ribose and phosphorus contents by this method. The ribose and phosphorus contents obtained by the quantitative NMR were consistent with those obtained by traditional chemical methods. In conclusion, this quantitative 1H- and 31P-NMR method using a single internal standard shows good specificity, accuracy and precision, providing a valuable approach for the quality control of Hib glycoconjugate vaccines.


Asunto(s)
Vacunas contra Haemophilus , Haemophilus influenzae tipo b , Fósforo , Polisacáridos Bacterianos , Ribosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA