Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 619(7968): 102-111, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37258676

RESUMEN

The stability and resilience of the Earth system and human well-being are inseparably linked1-3, yet their interdependencies are generally under-recognized; consequently, they are often treated independently4,5. Here, we use modelling and literature assessment to quantify safe and just Earth system boundaries (ESBs) for climate, the biosphere, water and nutrient cycles, and aerosols at global and subglobal scales. We propose ESBs for maintaining the resilience and stability of the Earth system (safe ESBs) and minimizing exposure to significant harm to humans from Earth system change (a necessary but not sufficient condition for justice)4. The stricter of the safe or just boundaries sets the integrated safe and just ESB. Our findings show that justice considerations constrain the integrated ESBs more than safety considerations for climate and atmospheric aerosol loading. Seven of eight globally quantified safe and just ESBs and at least two regional safe and just ESBs in over half of global land area are already exceeded. We propose that our assessment provides a quantitative foundation for safeguarding the global commons for all people now and into the future.


Asunto(s)
Cambio Climático , Planeta Tierra , Justicia Ambiental , Internacionalidad , Seguridad , Humanos , Aerosoles/metabolismo , Clima , Agua/metabolismo , Nutrientes/metabolismo , Seguridad/legislación & jurisprudencia , Seguridad/normas
2.
Environ Sci Technol ; 57(17): 6910-6921, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37074051

RESUMEN

Thaw slumps can lead to considerable carbon loss in permafrost regions, while the loss of components from two major origins, i.e., microbial and plant-derived carbon, during this process remains poorly understood. Here, we provide direct evidence that microbial necromass carbon is a major component of lost carbon in a retrogressive permafrost thaw slump by analyzing soil organic carbon (SOC), biomarkers (amino sugars and lignin phenols), and soil environmental variables in a typical permafrost thaw slump in the Tibetan Plateau. The retrogressive thaw slump led to a ∼61% decrease in SOC and a ∼25% SOC stock loss. As evident in the levels of amino sugars (average of 55.92 ± 18.79 mg g-1 of organic carbon, OC) and lignin phenols (average of 15.00 ± 8.05 mg g-1 OC), microbial-derived carbon (microbial necromass carbon) was the major component of the SOC loss, accounting for ∼54% of the SOC loss in the permafrost thaw slump. The variation of amino sugars was mainly related to the changes in soil moisture, pH, and plant input, while changes in lignin phenols were mainly related to the changes in soil moisture and soil bulk density.


Asunto(s)
Hielos Perennes , Suelo , Carbono , Tibet , Lignina , Fenoles , Amino Azúcares
3.
Glob Chang Biol ; 26(3): 1474-1484, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31560157

RESUMEN

Plants use only a fraction of their photosynthetically derived carbon for biomass production (BP). The biomass production efficiency (BPE), defined as the ratio of BP to photosynthesis, and its variation across and within vegetation types is poorly understood, which hinders our capacity to accurately estimate carbon turnover times and carbon sinks. Here, we present a new global estimation of BPE obtained by combining field measurements from 113 sites with 14 carbon cycle models. Our best estimate of global BPE is 0.41 ± 0.05, excluding cropland. The largest BPE is found in boreal forests (0.48 ± 0.06) and the lowest in tropical forests (0.40 ± 0.04). Carbon cycle models overestimate BPE, although models with carbon-nitrogen interactions tend to be more realistic. Using observation-based estimates of global photosynthesis, we quantify the global BP of non-cropland ecosystems of 41 ± 6 Pg C/year. This flux is less than net primary production as it does not contain carbon allocated to symbionts, used for exudates or volatile carbon compound emissions to the atmosphere. Our study reveals a positive bias of 24 ± 11% in the model-estimated BP (10 of 14 models). When correcting models for this bias while leaving modeled carbon turnover times unchanged, we found that the global ecosystem carbon storage change during the last century is decreased by 67% (or 58 Pg C).


Asunto(s)
Ecosistema , Árboles , Biomasa , Carbono , Ciclo del Carbono , Dióxido de Carbono , Secuestro de Carbono
4.
Environ Sci Technol ; 54(18): 11344-11355, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32822538

RESUMEN

Mercury (Hg) is a globally spread trace metal due to its long atmospheric residence time. Yet, our understanding of atmospheric processes (e.g., redox reactions and deposition) driving Hg cycling is still limited, especially in polar regions. The Antarctic continent, by virtue of its remoteness, is the perfect location to investigate Hg atmospheric processes in the absence of significant local anthropogenic impact. Here, we present the first 2 year record (2016-2017) of total suspended particulate mercury (PHg) concentrations along with a year-round determination of an Hg stable isotopic composition in particles collected at Zhongshan Station (ZSS), eastern Antarctic coast. The mean PHg concentration is 21.8 ± 32.1 pg/m3, ranging from 0.9 to 195.6 pg/m3, and peaks in spring and summer. The negative mass-independent fractionation of odd Hg isotopes (odd-MIF, average -0.38 ± 0.12‰ for Δ199Hg) and the slope of Δ199Hg/Δ201Hg with 0.91 ± 0.12 suggest that the springtime isotope variation of PHg is likely caused by in situ photo-oxidation and reduction reactions. On the other hand, the increase of PHg concentrations and the observed odd-MIF values in summer are attributed to the transport by katabatic winds of divalent species derived from the oxidation of elemental Hg in the inland Antarctic Plateau.


Asunto(s)
Mercurio , Regiones Antárticas , Monitoreo del Ambiente , Isótopos , Mercurio/análisis , Isótopos de Mercurio/análisis , Estaciones del Año
5.
Environ Sci Technol ; 54(10): 6043-6052, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32330020

RESUMEN

Measurements of land-air mercury (Hg) exchanges over vegetated surfaces are needed to further constrain Hg fluxes over vegetated terrestrial surfaces. Yet, knowledge of land-air Hg dynamics in alpine grasslands remains poor. Hg fluxes over an alpine meadow were measured throughout a full vegetation period in the central Tibetan Plateau (TP). This TP grassland served as a small source of atmospheric total gaseous Hg (TGM) during vegetation period (0.92 µg m-2). Hg fluxes decreased logarithmically during plant growing season, resulting from the influence of vegetation by light shading and plant Hg uptake, although the latter might be minor due to low biomass at this site. Temporal patterns of TGM indicated the importance of land-air dynamics in regulating TGM levels. During the plant emergence, diel pattern of TGM covaried with Hg emission fluxes resulting in lower concentrations at night and higher concentrations in afternoon. During all other vegetation stages, TGM showed minima before dawn and "morning peak" shortly after sunrise, in conjunction with corresponding Hg fluxes showing sink before dawn and source after sunrise. Moreover, TGM concentrations showed a decreasing trend with plant growing, further indicating the role of vegetation in driving seasonal TGM variations by regulating land-air Hg dynamics.


Asunto(s)
Contaminantes Atmosféricos/análisis , Mercurio/análisis , Hielos Perennes , Monitoreo del Ambiente , Estaciones del Año , Tibet
6.
J Environ Sci (China) ; 68: 130-142, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29908732

RESUMEN

The Tibetan Plateau (TP) is recognized as "Water Tower of Asia". Yet our understanding of mechanisms influencing incorporation of mercury (Hg) into freshwater in mountain glaciers on the TP remains quite limited. Extensive sampling of environmental matrices (e.g., snow/ice) were conducted on the East Rongbuk glacier on Mt. Everest and Zhadang glacier on Mt. Nyainqentanglha for Hg speciation analysis. Speciated Hg behaved quite different during snowmelt: a preferential early release of DHg (dissolved Hg) was observed at the onset of snowmelt, whereas PHg (particulate-bound Hg) and THg (total Hg) become relatively enriched in snow and released later. Small fraction of Hg in snow was lost during a snowmelt day (18.9%-34.7%) with a large proportion (58.1%-87.3%) contributed by PHg decrease, indicating that the deposited Hg is most likely retained in glacier snow/ice. Furthermore, THg were positively correlated with PHg and crustal major ions (e.g., Ca2+, Mg2+) during snowmelt, indicating that Hg is mainly migrated with particulates. The main pathway of Hg loss during snowmelt was most probably associated with release of PHg with meltwater, which was greatly influenced by ablation intensity of snow/ice. This should be paid particular concern as Hg preserved in mountain glaciers will mostly enter aquatic ecosystem as climate warms, impacting on downstream ecosystems adversely. Obvious decrease of THg during the downstream transport from glacier was observed with a large proportion contributed by PHg decrease. The main removal mechanism of Hg was associated with sedimentation of PHg during the transport process.


Asunto(s)
Monitoreo del Ambiente , Mercurio/análisis , Nieve/química , Contaminantes Químicos del Agua/análisis , Contaminantes Atmosféricos/análisis , Cubierta de Hielo/química , Tibet
7.
J Environ Sci (China) ; 46: 190-202, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27521951

RESUMEN

The spatiotemporal distribution pattern of marine-origin matter on the Antarctica ice sheet was used to study variations in the source regions, transport mechanisms and post-depositional influences. We present data on sea salt ions, sulfur components and stable isotopes from surface and snow pit samples collected along the transect route from Zhongshan Station to Dome A during the austral summer in 2012-2013. A general decreasing trend in the accumulation, sea salt ions and sulfur components occurred with increasing distance from the coast and increasing elevation. However, different sources of the marine components, transport pathways and post-depositional influences were responsible for their different spatial distribution patterns. The marine ions in the coastal snow pit varied seasonally, with higher sea salt ion concentrations in the winter and lower concentrations in the summer; the opposite pattern was found for the sulfur compounds. The sea ice area surrounding Antarctica was the main source region for the deposited sea salt and the open sea water for the sulfur compounds. No significant trends in the marine-origin components were detected during the past 3 decades. Several periods of elevated deposition of sea salt ions were associated with lower temperatures (based on δD and δ(18)O) or intensified wind fields. In comparison to the sea salt ions, the sulfur concentrations exhibited the opposite distribution patterns and were associated with changes in the surrounding sea ice extent.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Nieve/química , Regiones Antárticas , Estaciones del Año , Compuestos de Azufre/análisis
8.
Environ Res ; 132: 212-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24815333

RESUMEN

BACKGROUND: Devastating health effects from recent heat waves in China have highlighted the importance of understanding health consequences from extreme heat stress. Despite the increasing mortality from extreme heat, very limited studies have quantified the effects of summer extreme temperature on heat-related illnesses in China. METHODS: The associations between extreme heat and daily heat-related illnesses that occurred in the summers of 2011-2013 in Ningbo, China, have been examined, using a distributed lag non-linear model (DLNM) based on 3862 cases. The excess morbidities of heat-related illness during each heat wave have been calculated separately and the cumulative heat wave effects on age-, sex-, and cause-specific illnesses in each year along lags have been estimated as well. RESULTS: After controlling the effect of relative humidity, it is found that maximum temperature, rather than heat index, was a better predictor of heat-related illnesses in summers. A positive association between maximum temperatures and occurrence of heat-related diseases was apparent, especially at short lag effects. Six heat waves during the period of 2011-2013 were identified and all associated with excess heat-related illnesses. Relative to the average values for the corresponding periods in 2011 and 2012, a total estimated 679 extra heat-related illnesses occurred during three heat waves in 2013. The significant prolonged heat wave effects on total heat-related illnesses during heat waves in three study years have also been identified. The strongest cumulative effect of heat waves was on severe heat diseases in 2013, with a 10-fold increased risk. More males than females, individuals with more severe forms of illness, were more affected by the heat. However, all age groups were vulnerable. CONCLUSIONS: Recent heat waves had a substantial and delayed effect on heat illnesses in Ningbo. Relevant active well-organized public health initiatives should be implemented to reduce the adverse effects of heat extremes on the illnesses.


Asunto(s)
Trastornos de Estrés por Calor/epidemiología , Calor/efectos adversos , Adolescente , Adulto , Anciano , Niño , Preescolar , China/epidemiología , Ciudades/epidemiología , Estudios de Cohortes , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Adulto Joven
9.
Environ Sci Technol ; 47(12): 6181-8, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23668686

RESUMEN

Melting of Himalayan glaciers can be accelerated by the deposition of airborne black carbon and mineral dust as it leads to significant reductions of the surface albedo of snow and ice. Whereas South Asia has been shown a primary source region to these particles, detailed sources of these aerosol pollutants remain poorly understood. In this study, the chemical compositions of snow pit samples collected from Jima Yangzong glacier in the central Himalayas were analyzed to obtain information of atmospheric aerosols deposited from summer 2009 to spring 2010. Especially, an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was used for the first time to chemically characterize the dissolved organic and inorganic matter (DOM and DIM) in snow samples. The concentrations of these species varied seasonally, with high levels observed during the winter-spring period and low levels during the summer monsoon period. On average, the dissolved substances was dominated by organics (58%) with important contributions from inorganic species, NO3(-) (12.5%), Ca(2+) (9.1%), NH4(+) (8.7%), and SO(4)(2-) (8.1%). DOM was found more oxidized with an average (± 1σ) atomic oxygen-to-carbon ratio (nO/nC) of 0.64 (± 0.14) and organic mass-to-carbon ratio (OM/OC) of 2.01 (± 0.19) during the winter-spring periods compared to the summer season (nO/nC = 0.31 ± 0.09 and OM/OC = 1.58 ± 0.12). In addition, biomass burning particles were found significantly enhanced in snow during the winter-spring periods, consistent with HYSPLIT back trajectory analysis of air mass history, which indicates prevailing atmospheric transport from northwest India and Nepal.


Asunto(s)
Contaminantes Atmosféricos/análisis , Cubierta de Hielo/química , Nieve/química , India , Espectrometría de Masas , Nepal
10.
Natl Sci Rev ; 9(3): nwab113, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35265337

RESUMEN

China's climate has been warming since the 1950s, with surface air temperature increasing at a rate higher than the global average. Changes in climate have exerted substantial impacts on water resources, agriculture, ecosystems and human health. Attributing past changes to causes provides a scientific foundation for national and international climate policies. Here, we review recent progress in attributing the observed climate changes over past decades in China. Anthropogenic forcings, dominated by greenhouse gas emissions, are the main drivers for observed increases in mean and extreme temperatures. Evidence of the effect of anthropogenic forcings on precipitation is emerging. Human influence has increased the probability of extreme heat events, and has likely changed the occurrence probabilities for some heavy precipitation events. The way a specific attribution question is posed and the conditions under which the question is addressed present persistent challenges for appropriately communicating attribution results to non-specialists.

11.
Sci Bull (Beijing) ; 66(23): 2394-2404, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36654125

RESUMEN

While Arctic sea ice has been decreasing in recent decades that is largely due to anthropogenic forcing, the extent of Antarctic sea ice showed a positive trend during 1979-2015, followed by an abrupt decrease. The shortness of the satellite record limits our ability to quantify the possible contribution of anthropogenic forcing and internal variability to the observed Antarctic sea ice variability. In this study, ice core and fast ice records with annual resolution from six sites are used to reconstruct the annual-resolved northernmost latitude of sea ice edge (NLSIE) for different sectors of the Southern Ocean, including the Weddell Sea (WS), Bellingshausen Sea (BS), Amundsen Sea (AS), Ross Sea (RS), and the Indian and western Pacific Ocean (IndWPac). The linear trends of the NLSIE are analyzed for each sector for the past 100-200 years and found to be -0.08°, -0.17°, +0.07°, +0.02°, and -0.03° per decade (≥95% confidence level) for the WS, BS, AS, RS, and IndWPac, respectively. For the entire Antarctic, our composite NLSIE shows a decreasing trend (-0.03° per decade, 99% confidence level) during the 20th century, with a rapid decline in the mid-1950s. It was not until the early 1980s that the observed increasing trend occurred. A comparison with major climate indices shows that the long-term linear trends in all five sectors are largely dominated by the changes in the Southern Annular Mode (SAM). The multi-decadal variability in WS, BS, and AS is dominated by the Interdecadal Pacific Oscillation, whereas that in the IndWPac and RS is dominated by the SAM.


Asunto(s)
Clima , Cubierta de Hielo , Regiones Antárticas , Océano Índico , Regiones Árticas
12.
Environ Pollut ; 280: 116970, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33780845

RESUMEN

Sichuan Basin is encircled by high mountains and plateaus with the heights ranging from 1 km to 3 km, and is one of the most polluted regions in China. However, the dominant chemical species and light absorption properties of aerosol particles is still not clear in rural areas. Chemical composition in PM1 (airborne particulate matter with an aerodynamic diameter less than 1 µm) and light-absorbing properties were determined in Chengdu (urban) and Sanbacun (rural) in western Sichuan Basin (WSB), Southwest China. Carbonaceous aerosols and secondary inorganic ions (NH4+, NO3- and SO42-) dominate PM1 pollution, contributing more than 85% to PM1 mass at WSB. The mean concentrations of organic and elemental carbon (OC, EC), K+ and Cl- are 19.69 µg m-3, 8.00 µg m-3, 1.32 µg m-3, 1.16 µg m-3 at the rural site, which are 26.2%, 65.3%, 34.7% and 48.7% higher than those at the urban site, respectively. BrC (brown carbon) light absorption coefficient at 405 nm is 63.90 ± 27.81 M m-1 at the rural site, contributing more than half of total absorption, which is about five times higher than that at urban site (10.43 ± 4.74 M m-1). Compared with secondary OC, rural BrC light absorption more depends on primary OC from biomass and coal burning. The rural MAEBrC (BrC mass absorption efficiency) at 405 nm ranges from 0.6 to 5.1 m2 g-1 with mean value of 3.5 ± 0.8 m2 g-1, which is about three times higher than the urban site.


Asunto(s)
Contaminantes Atmosféricos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Carbono/análisis , China , Monitoreo del Ambiente , Material Particulado/análisis , Estaciones del Año
13.
Environ Monit Assess ; 160(1-4): 323-35, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19083111

RESUMEN

Atmospheric aerosols were collected during the scientific expedition to Mt. Qomolangma (Everest) in May-June, 2005. The elemental concentrations of the aerosols were determined by inductively coupled plasma mass spectrometry. This yielded data for the concentration of 14 elements: Na, Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, and Pb. The mean elemental concentrations were generally comparable with those from central Asia and the Arctic, while much higher than those from Antarctic. Size, morphology, and chemical composition of 900 individual aerosol particles were determined by scanning electron microscopy and energy-dispersive X-ray microanalysis. Based on morphology and elemental composition, the particles were clustered into eight groups: soot (8%), tar ball (3%), alumosilicates/silica (55%), calcium sulfate (16%), Ca/Mg carbonate (2%), Fe/Ti-rich particles (3%), Pb-rich particles (1%), and biological particles (12%). The sampling site, located at 6,520 m in the Himalayas, is particularly remote and located at high altitude. Nonetheless, high aerosol enrichment factors for copper, chromium, lead, nickel, vanadium, and zinc all suggest the influence of long-range transported pollution, while enrichment in calcium and the presence of alumino-silicates in individual particle analyses indicates a distinct mineral dust influence. The backward air mass trajectories showed that the northwestern part of India may contribute to the atmospheric aerosol in the central high Himalayas.


Asunto(s)
Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Altitud , Monitoreo del Ambiente , China , Geografía , India
14.
Nat Commun ; 11(1): 4892, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32994398

RESUMEN

Dryness stress can limit vegetation growth and is often characterized by low soil moisture (SM) and high atmospheric water demand (vapor pressure deficit, VPD). However, the relative role of SM and VPD in limiting ecosystem production remains debated and is difficult to disentangle, as SM and VPD are coupled through land-atmosphere interactions, hindering the ability to predict ecosystem responses to dryness. Here, we combine satellite observations of solar-induced fluorescence with estimates of SM and VPD and show that SM is the dominant driver of dryness stress on ecosystem production across more than 70% of vegetated land areas with valid data. Moreover, after accounting for SM-VPD coupling, VPD effects on ecosystem production are much smaller across large areas. We also find that SM stress is strongest in semi-arid ecosystems. Our results clarify a longstanding question and open new avenues for improving models to allow a better management of drought risk.

15.
Environ Pollut ; 264: 114694, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32402710

RESUMEN

The strict Clean Air Action Plan has been in place by central and local government in China since 2013 to alleviate haze pollution. In response to implementation of the Plan, daytime PM2.5 (particulate matter with aerodynamic diameter less than 2.5 µm) showed significant downward trends from 2015 to 2019, with the largest reduction during spring and winter in the North China Plain. Unlike PM2.5, O3 (ozone) showed a general increasing trend, reaching 29.7 µg m-3 on summer afternoons. Increased O3 and reduced PM2.5 simultaneously occurred in more than half of Chinese cities, increasing to approximately three-fourths in summer. Declining trends in both PM2.5 and O3 occurred in only a few cities, varying from 19.1% of cities in summer to 33.7% in fall. Meteorological variables helped to decrease PM2.5 and O3 in some cities and increase PM2.5 and O3 in others, which is closely related to terrain. High wind speed and 24 h changing pressure favored PM2.5 dispersion and dilution, especially in winter in southern China. However, O3 was mainly affected by 24 h maximum temperature over most cities. Soil temperature was found to be a key factor modulating air pollution. Its impact on PM2.5 concentrations depended largely on soil depth and seasons; spring and fall soil temperature at 80 cm below the surface had largely negative impacts. Compared with PM2.5, O3 was more significantly affected by soil temperature, with the largest impact at 20 cm below the surface and with less seasonal variation.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , China , Ciudades , Monitoreo del Ambiente , Material Particulado/análisis , Estaciones del Año
16.
J Environ Sci (China) ; 21(7): 914-9, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19862956

RESUMEN

To assess the seasonality of aerosol deposition and anthropogenic effects on central Himalayas, a 1.85-m deep snow pit was dug on the northern slope of Mt. Qomolangma (Everest). Based on the morphology and energy dispersive X-ray (EDX) signal, totally 1500 particles were classed into 7 groups: soot; aluminosilicates; fly ash; calcium sulfates; Ca/Mg carbonates; metal oxides; and biological particles and carbon fragments. The size distribution and number fractions of different particle groups exhibited distinct seasonal variations between non-monsoon and monsoon periods, which are clearly related to the differences in air mass pathways. Specifically, the relative abundance of soot in non-monsoon period (25%) was much higher than that in monsoon period (14%), indicating Mt. Qomolangma region received more anthropogenic influence in non-monsoon than monsoon period.


Asunto(s)
Aerosoles/análisis , Monitoreo del Ambiente , Estaciones del Año , Nieve/química , Altitud , Silicatos de Aluminio/análisis , Carbonato de Calcio/análisis , Sulfato de Calcio/análisis , Carbono/análisis , China , Ceniza del Carbón , Microscopía Electrónica de Rastreo , Material Particulado/análisis , Hollín/análisis
17.
Environ Pollut ; 246: 79-88, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30529944

RESUMEN

Pollutants, which are usually transported from urban cities to remote glacier basins, and aerosol impurities affect the earth's temperature and climate by altering the radiative properties of the atmosphere. This work focused on the physicochemical properties of atmospheric pollutants across the urban and remote background sites in northwest China. Information on individual particles was obtained using transmission electron microscopy (TEM) and energy dispersive X-ray spectrometry (EDX). Particle size and age-dependent mixing structures of individual particles in clean and polluted air were investigated. Aerosols were classified into eight components: mineral dust, black carbon (soot)/fly ash, sulfates, nitrates, NaCl salt, ammonium, organic matter, and metals. Marked spatial and seasonal changes in individual particle components were observed in the study area. Aerosol particles were generally found to be in the mixing state. For example, salt-coated particles in summer accounted for 31.2-44.8% of the total particles in urban sites and 37.5-74.5% of the total particles in background sites, while in winter, almost all urban sites comprised >50%, which implies a significant effect on the radiative forcing in the study area. We found that in PM2.5 section, the internally mixed black carbon/organic matter particles clearly increased with diameter. Moreover, urban cities were characterized by atmospheric particles sourced from anthropogenic activities, whereas background locations exhibited much lower aerosol concentrations and increased particle density, originating from natural crustal sources (e.g., mineral dust and NaCl salt), which, together with air mass trajectory analysis, indicates a potential spatial transport process and routes of atmospheric transport from urban cities to background locations. Thus, this work is of importance in evaluating atmospheric conditions in northwest China and northeast Tibetan Plateau regions, to discover the transport processes and facilitate improvements in climatic patterns concerning atmospheric impurities.


Asunto(s)
Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Atmósfera/análisis , Monitoreo del Ambiente , Material Particulado/análisis , Estaciones del Año , Movimientos del Aire , China , Tamaño de la Partícula
18.
Natl Sci Rev ; 6(4): 796-809, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34691935

RESUMEN

The Tibetan Plateau and its surroundings are known as the Third Pole (TP). This region is noted for its high rates of glacier melt and the associated hydrological shifts that affect water supplies in Asia. Atmospheric pollutants contribute to climatic and cryospheric changes through their effects on solar radiation and the albedos of snow and ice surfaces; moreover, the behavior and fates within the cryosphere and environmental impacts of environmental pollutants are topics of increasing concern. In this review, we introduce a coordinated monitoring and research framework and network to link atmospheric pollution and cryospheric changes (APCC) within the TP region. We then provide an up-to-date summary of progress and achievements related to the APCC research framework, including aspects of atmospheric pollution's composition and concentration, spatial and temporal variations, trans-boundary transport pathways and mechanisms, and effects on the warming of atmosphere and changing in Indian monsoon, as well as melting of glacier and snow cover. We highlight that exogenous air pollutants can enter into the TP's environments and cause great impacts on regional climatic and environmental changes. At last, we propose future research priorities and map out an extended program at the global scale. The ongoing monitoring activities and research facilitate comprehensive studies of atmosphere-cryosphere interactions, represent one of China's key research expeditions to the TP and the polar regions and contribute to the global perspective of earth system science.

19.
Sci Rep ; 8(1): 2962, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29440774

RESUMEN

Memory effects refer to the impacts of antecedent climate conditions on current vegetation productivity. This temporal linkage has been found to be strong in arid and semi-arid regions. However, the dominant climatic factors that determine such patterns are still unclear. Here, we defined'water-memory effects' as the persistent effects of antecedent precipitation on the vegetation productivity for a given memory length (from 1 to up to 12 months). Based on satellite observations and climate data, we quantified the length of water-memory effects and evaluated the contributions of antecedent precipitation on current vegetation. Our results showed that vegetation productivity was highly dependent on antecedent precipitation in arid and semi-arid regions. The average length of water memory was approximately 5.6 months. Globally, water-memory effects could explain the geographical pattern and strength of memory effects, indicating that precipitation might be the dominant climatic factor determining memory effects because of its impact on water availability. Moreover, our results showed vegetation in regions with low mean annual precipitation or a longer water memory has lower engineering resilience (i.e. slower recovery rate) to disturbances. These findings will enable better assessment of memory effects and improve our understanding of the vulnerability of vegetation to climate change.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Cambio Climático , Fenómenos Fisiológicos de las Plantas/efectos de los fármacos , Agua/farmacología
20.
Sci Total Environ ; 624: 540-557, 2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29268226

RESUMEN

Spatiotemporal variations of six criteria air pollutants and influencing factors in the city clusters of Sichuan Basin were studied based on real-time hourly concentrations of PM2.5 (the particles with diameters smaller than 2.5µm), PM10 (the particles with diameters smaller than 10µm), SO2, NO2, CO and O3 and routine meteorological data during the years from 2015 to 2017. The Sichuan Basin was further categorized into four regions: West, south, northeast Sichuan Basin (WSB, SSB and NESB) and plateau of west Sichuan Basin (PWSB) to better understand regional air pollution characteristics. Heavy air pollution was mainly induced by high PM2.5 or ozone concentrations in the cities clusters of Sichuan Basin. The compound air pollution characteristics existed in WSB with simultaneously high concentrations of PM2.5 and ozone, while PM2.5 concentrations in SSB were the highest among the four regions and especially in the city of Zigong with maximum PM2.5 concentration of 109.3µgm-3 in winter. The MDA8 (daily maximum 8-hour average surface O3 concentrations) more frequently exceeded CAAQS (Chinese Ambient Air Quality Standards) Grade I and II standards in Ziyang, Guang'an and Liangshan than the other cities maybe due to joint effects of industry emissions and regional transportation from surrounding cities. Annual (diurnal) variations of the pollutants with the exception of ozone showed "U" (flat "W") shape, while the ozone exhibited the opposite trends inside Sichuan Basin (WSB, SSB and NESB). Ozone pollution was more dependent on vehicle emissions inside Sichuan Basin, and industry had more important effects on ozone in the cities of PWSB with less vehicles. Severe ozone pollution can be formed easily under the weather conditions of high temperature, long sunshine duration and low RH (relative humidity) inside Sichuan Basin. High ozone concentrations in winter in PWSB may be partly transported from the other surrounding cities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA