RESUMEN
DNA and histone modifications have notable effects on gene expression1. Being the most prevalent internal modification in mRNA, the N6-methyladenosine (m6A) mRNA modification is as an important post-transcriptional mechanism of gene regulation2-4 and has crucial roles in various normal and pathological processes5-12. However, it is unclear how m6A is specifically and dynamically deposited in the transcriptome. Here we report that histone H3 trimethylation at Lys36 (H3K36me3), a marker for transcription elongation, guides m6A deposition globally. We show that m6A modifications are enriched in the vicinity of H3K36me3 peaks, and are reduced globally when cellular H3K36me3 is depleted. Mechanistically, H3K36me3 is recognized and bound directly by METTL14, a crucial component of the m6A methyltransferase complex (MTC), which in turn facilitates the binding of the m6A MTC to adjacent RNA polymerase II, thereby delivering the m6A MTC to actively transcribed nascent RNAs to deposit m6A co-transcriptionally. In mouse embryonic stem cells, phenocopying METTL14 knockdown, H3K36me3 depletion also markedly reduces m6A abundance transcriptome-wide and in pluripotency transcripts, resulting in increased cell stemness. Collectively, our studies reveal the important roles of H3K36me3 and METTL14 in determining specific and dynamic deposition of m6A in mRNA, and uncover another layer of gene expression regulation that involves crosstalk between histone modification and RNA methylation.
Asunto(s)
Adenosina/análogos & derivados , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , Transcripción Genética , Adenosina/metabolismo , Animales , Diferenciación Celular , Línea Celular , Células Madre Embrionarias/metabolismo , Humanos , Lisina/química , Metilación , Metiltransferasas/deficiencia , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , ARN Polimerasa II/metabolismo , Elongación de la Transcripción Genética , Transcriptoma/genéticaRESUMEN
Chronic graft-versus-host disease (cGVHD) is an autoimmune-like syndrome. CXCR5-PD-1hi peripheral T-helper (Tph) cells have an important pathogenic role in autoimmune diseases, but the role of Tph cells in cGVHD remains unknown. We show that in patients with cGVHD, expansion of Tph cells among blood CD4+ T cells was associated with cGVHD severity. These cells augmented memory B-cell differentiation and production of immunoglobulin G via interleukin 21 (IL-21). Tph cell expansion was also observed in a murine model of cGVHD. This Tph cell expansion in the blood is associated with the expansion of pathogenic tissue-resident T-helper (Trh) cells that form lymphoid aggregates surrounded by collagen in graft-versus-host disease (GVHD) target tissues. Adoptive transfer experiments showed that Trh cells from GVHD target tissues give rise to Tph cells in the blood, and conversely, Tph cells from the blood give rise to Trh cells in GVHD target tissues. Tph cells in the blood and Trh cells in GVHD target tissues had highly overlapping T-cell receptor α and ß repertoires. Deficiency of IL-21R, B-cell lymphoma 6 (BCL6), or T-bet in donor T cells markedly reduced the proportions of Tph cells in the blood and Trh cells in GVHD target tissues and reduced T-B interaction in the lymphoid aggregates. These results indicate that clonally related pathogenic Tph cells and Trh cells traffic between the blood and cGVHD target tissues, and that IL-21R-BCL6 signaling and T-bet are required for the development and expansion of Tph and Trh cells in the pathogenesis of cGVHD.
Asunto(s)
Síndrome de Bronquiolitis Obliterante , Enfermedad Injerto contra Huésped , Humanos , Ratones , Animales , Linfocitos T Colaboradores-Inductores , Linfocitos T CD4-Positivos , Linfocitos B/patología , Enfermedad CrónicaRESUMEN
Osteomyelitis (OM), characterized by heterogeneity and complexity in treatment, has a high risk of infection recurrence which may cause limb disability. Management of chronic inactive osteomyelitis (CIOM) without typical inflammatory symptoms is a great challenge for orthopedic surgeons. On the basis of data analysis of 1091 OM cases, we reported that latent osteogenic decline in CIOM patients was the main cause of secondary surgery. Our research shows that impairment of osteoblasts capacity in CIOM patients is associated with ferroptosis of osteoblasts caused by internalization of Staphylococcus aureus. Further studies show that melatonin could alleviate ferroptosis of osteoblasts in infected states through Nox4/ROS/P38 axis and protect the osteogenic ability of CIOM patients. Knockout of NADPH oxidase 4 (Nox4) in vivo could effectively relieve ferroptosis of osteoblasts in the state of infection and promote osteogenesis. Through a large number of clinical data analyses combined with molecular experiments, this study clarified that occult osteogenic disorders in CIOM patients were related to ferroptosis of osteoblasts. We revealed that melatonin might be a potential therapeutic drug for CIOM patients and provided a new insight for the treatment of OM.
Asunto(s)
Melatonina , Osteomielitis , Humanos , Melatonina/farmacología , Melatonina/uso terapéutico , Osteoblastos , Osteogénesis , Staphylococcus aureus , Osteomielitis/tratamiento farmacológicoRESUMEN
BACKGROUND: Minimally invasive treatment has become the most popular and effective treatment for pelvic fractures. This study aimed to evaluate the safety and efficacy of a new technique, titanium elastic nailing (TEN), for the minimally invasive treatment of pelvic fractures. METHOD: Twenty-four patients with pelvic fractures were referred to us between January 2020 to January 2022, including sixteen males and 8 females. Pelvic fractures were temporarily fixed by pelvic fixation belt accompanied by traction from the lower limb bone. Anterior pelvic ring injuries (superior ramus of pubis) and ilium fractures were treated with closed reduction and intramedullary fixation with minimally invasive TEN. Intraoperative C-arm, including pelvic anteroposterior, pelvic outlet, inlet and ilium oblique views, and O-arm fluoroscopy (intraoperative CT) were employed to assess fractures reduction and determine the location of the elastic titanium nail within the bone channel. RESULTS: By adopting closed reduction and minimally invasive incision techniques, pelvic fractures could be safely fixed by placing an elastic titanium nail in the osseous medullary cavity channels of the pelvis. Postoperative investigation indicated that the wounds of all patients were healed in the first stage without any occurrence of complications, such as injuries to the nerves, blood vessels, and important tissue structures. Patients are essential quickly after the operation and could perform the functional exercise in the early stages of the recovery. CONCLUSION: TEN can be used for minimally invasive treatment of pelvic fractures. This novel technique has no obvious complications and is worthwhile in clinical practice.
Asunto(s)
Clavos Ortopédicos , Fracturas Óseas , Procedimientos Quirúrgicos Mínimamente Invasivos , Huesos Pélvicos , Titanio , Humanos , Femenino , Masculino , Huesos Pélvicos/lesiones , Huesos Pélvicos/cirugía , Fracturas Óseas/cirugía , Adulto , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Procedimientos Quirúrgicos Mínimamente Invasivos/instrumentación , Persona de Mediana Edad , Fijación Intramedular de Fracturas/métodos , Fijación Intramedular de Fracturas/instrumentación , Adulto Joven , Resultado del TratamientoRESUMEN
Donor T cells mediate both graft-versus-leukemia (GVL) activity and graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation (allo-HCT). Development of methods that preserve GVL activity while preventing GVHD remains a long-sought goal. Tolerogenic anti-interleukin-2 (IL-2) monoclonal antibody (JES6-1) forms anti-IL-2/IL-2 complexes that block IL-2 binding to IL-2Rß and IL-2Rγ on conventional T cells that have low expression of IL-2Rα. Here, we show that administration of JES6 early after allo-HCT in mice markedly attenuates acute GVHD while preserving GVL activity that is dramatically stronger than observed with tacrolimus (TAC) treatment. The anti-IL-2 treatment downregulated activation of the IL-2-Stat5 pathway and reduced production of granulocyte-macrophage colony-stimulating factor (GM-CSF). In GVHD target tissues, enhanced T-cell programmed cell death protein 1 (PD-1) interaction with tissue-programmed cell death-ligand 1 (PD-L1) led to reduced activation of protein kinase-mammalian target of rapamycin pathway and increased expression of eomesodermin and B-lymphocyte-induced maturation protein-1, increased T-cell anergy/exhaustion, expansion of Foxp3-IL-10-producing type 1 regulatory (Tr1) cells, and depletion of GM-CSF-producing T helper type 1 (Th1)/cytotoxic T cell type 1 (Tc1) cells. In recipient lymphoid tissues, lack of donor T-cell PD-1 interaction with tissue PD-L1 preserved donor PD-1+TCF-1+Ly108+CD8+ T memory progenitors and functional effectors that have strong GVL activity. Anti-IL-2 and TAC treatments have qualitatively distinct effects on donor T cells in the lymphoid tissues, and CD8+ T memory progenitor cells are enriched with anti-IL-2 treatment compared with TAC treatment. We conclude that administration of tolerogenic anti-IL-2 monoclonal antibody early after allo-HCT represents a novel approach for preventing acute GVHD while preserving GVL activity.
Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Enfermedad Injerto contra Huésped/prevención & control , Efecto Injerto vs Leucemia/efectos de los fármacos , Trasplante de Células Madre Hematopoyéticas , Interleucina-2/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Enfermedad Injerto contra Huésped/inmunología , Inmunosupresores/uso terapéutico , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Tacrolimus/uso terapéutico , Trasplante HomólogoRESUMEN
Ten-eleven translocation (TET) family enzymes (TET1, TET2, and TET3) oxidize 5-methylcytosine (5mC) and generate 5-hydroxymethylcytosine (5hmC) marks on the genome. Each TET protein also interacts with specific binding partners and partly plays their role independent of catalytic activity. Although the basic role of TET enzymes is well established now, the molecular mechanism and specific contribution of their catalytic and noncatalytic domains remain elusive. Here, by combining in silico and biochemical screening strategy, we have identified a small molecule compound, C35, as a first-in-class TET inhibitor that specifically blocks their catalytic activities. Using this inhibitor, we explored the enzymatic function of TET proteins during somatic cell reprogramming. Interestingly, we found that C35-mediated TET inactivation increased the efficiency of somatic cell programming without affecting TET complexes. Using high-throughput mRNA sequencing, we found that by targeting 5hmC repressive marks in the promoter regions, C35-mediated TET inhibition activates the transcription of the BMP-SMAD-ID signaling pathway, which may be responsible for promoting somatic cell reprogramming. These results suggest that C35 is an important tool for inducing somatic cell reprogramming, as well as for dissecting the other biological functions of TET enzymatic activities without affecting their other nonenzymatic roles.
Asunto(s)
Reprogramación Celular , Proteínas de Unión al ADN/antagonistas & inhibidores , Dioxigenasas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Dominio Catalítico , Línea Celular , Reprogramación Celular/efectos de los fármacos , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/química , Dioxigenasas/genética , Dioxigenasas/metabolismo , Humanos , Oxigenasas de Función Mixta/antagonistas & inhibidores , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismoRESUMEN
Background: Substantial evidence shows that crosstalk between cartilage and subchondral bone may play an important role in cartilage repair. Animal models have shown that hydroxyapatite-grafted-chitosan implant (HA-g-CS) and moderate-intensity exercise promote regeneration of osteochondral defects. However, no in vivo studies have demonstrated that these two factors may have a synergistic activity to facilitate subchondral bone remodeling in mice, thus supporting bone-cartilage repair. Questions: This study was to clarify whether HA-g-CS and moderate-intensity exercise might have a synergistic effect on facilitating (1) regeneration of osteochondral defects and (2) subchondral bone remodeling in a mouse model of osteochondral defects. Methods: Mouse models of osteochondral defects were created and divided into four groups. BC Group was subjected to no treatment, HC Group to HA-g-CS implantation into osteochondral defects, ME group to moderate-intensity treadmill running exercise, and HC+ME group to both HA-g-CS implantation and moderate-intensity exercise until sacrifice. Extent of subchondral bone remodeling at the injury site and subsequent cartilage repair were assessed at 4 weeks after surgery. Results: Compared with BC group, HC, ME and HC+ME groups showed more cartilage repair and thicker articular cartilage layers and HC+ME group acquired the best results. The extent of cartilage repair was correlated positively to bone formation activity at the injured site as verified by microCT and correlation analysis. Histology and immunofluorescence staining confirmed that bone remodeling activity was increased in HC and ME groups, and especially in HC+ME group. This bone formation process was accompanied by an increase in osteogenesis and chondrogenesis factors at the injury site which promoted cartilage repair. Conclusions: In a mouse model of osteochondral repair, HA-g-CS implant and moderate-intensity exercise may have a synergistic effect on improving osteochondral repair potentially through promotion of subchondral bone remodeling and generation of osteogenesis and chondrogenesis factors. Clinical Relevance: Combination of HA-g-CS implantation and moderate-intensity exercise may be considered potentially in clinic to promote osteochondral defect repair. Also, cartilage and subchondral bone forms a functional unit in an articular joint and subchondral bone may regulate cartilage repair by secreting growth factors in its remodeling process. However, a deeper insight into the exact role of HA-g-CS implantation and moderate-intensity exercise in promoting osteochondral repair in other animal models should be explored before they can be applied in clinic in the future.
Asunto(s)
Regeneración Ósea , Remodelación Ósea , Sustitutos de Huesos/uso terapéutico , Cartílago Articular/lesiones , Condicionamiento Físico Animal/fisiología , Animales , Regeneración Ósea/efectos de los fármacos , Regeneración Ósea/fisiología , Remodelación Ósea/efectos de los fármacos , Remodelación Ósea/fisiología , Sustitutos de Huesos/química , Sustitutos de Huesos/farmacología , Cartílago Articular/patología , Cartílago Articular/fisiopatología , Quitosano/química , Quitosano/farmacología , Condrogénesis/efectos de los fármacos , Durapatita/química , Durapatita/farmacología , Fracturas Óseas/patología , Fracturas Óseas/fisiopatología , Fracturas Óseas/terapia , Ratones , Ratones Endogámicos C57BL , Osteogénesis/efectos de los fármacos , Osteogénesis/fisiología , Ingeniería de Tejidos/métodos , Andamios del Tejido/químicaRESUMEN
Our laboratory originally synthesized strontium(Sr)-containing α-calcium sulphate hemihydrate/nano-hydroxyapatite composite (Sr-α-CSH/n-HA) and demonstrated its ability to repair critical bone defects. This study attempted to incorporate aspirin into it to produce a better bone graft material for critical bone defects. After 5% Sr-α-CSH was prepared by coprecipitation and hydrothermal methods, it was mixed with aspirin solution of different concentrations (50 µg/ml, 200 µg/ml, 800 µg/ml and 3200 µg/ml) at a fixed liquid-solid ratio (0.54 v/w) to obtain aspirin-loaded Sr-α-CSH/n-HA composite. In vitro experiments were performed on the composite extracts. The tibial defects (3 mm*5 mm) in SD rat model were filled with the composite for 4 weeks and 12 weeks to evaluate its osteogenic capacity in vivo. Our results showed its capability of proliferation, migration and osteogenesis of BMSCs in vitro got improved. In vivo treatment with 800 µg/ml aspirin-loaded Sr-α-CSH/n-HA composite led to significantly more new bone formation in the defects compared with Sr-α-CSH/n-HA composite and significantly promoted the expression of osteogenic-related genes and inhibited osteoclast activity. In general, our research suggests that aspirin-loaded Sr-α-CSH/n-HA composite may have a greater capacity of repairing tibial defects in SD rats than simple Sr-α-CSH/n-HA composite.
Asunto(s)
Materiales Biocompatibles/farmacología , Regeneración Ósea/efectos de los fármacos , Sulfato de Calcio/farmacología , Durapatita/farmacología , Osteogénesis/efectos de los fármacos , Animales , Materiales Biocompatibles/química , Sustitutos de Huesos/química , Sustitutos de Huesos/farmacología , Huesos/diagnóstico por imagen , Huesos/efectos de los fármacos , Huesos/metabolismo , Sulfato de Calcio/química , Fenómenos Químicos , Durapatita/química , Inmunohistoquímica , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratas , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X , Microtomografía por Rayos XRESUMEN
BACKGROUND: Desmoplastic small round cell tumor (DSRCT) is a rare, highly aggressive, translocation-associated soft-tissue sarcoma that primarily affects children, adolescents, and young adults, with a striking male predominance. It is characterized by t(11;22) generating a novel EWSR1-WT1 fusion gene. Secondary genomic alterations are rarely described. METHODS: Tumor tissue from 83 DSRCT patients was assayed by hybrid-capture based comprehensive genomic profiling, FoundationOne® Heme next generation sequencing analysis of 406 genes and RNA sequencing of 265 genes. Tumor mutation burden was calculated from a minimum of 1.4 Mb sequenced DNA. Microsatellite instability status was determined by a novel algorithm analyzing 114 specific loci. RESULTS: Comprehensive genomic profiling identified several genomically-defined DSRCT subgroups. Recurrent genomic alterations were most frequently detected in FGFR4, ARID1A, TP53, MSH3, and MLL3 genes. With the exception of FGFR4, where the genomic alterations predicted activation, most of the alterations in the remaining genes predicted gene inactivation. No DSRCT were TMB or MSI high. CONCLUSIONS: In summary, recurrent secondary somatic alterations in FGFR4, ARID1A, TP53, MSH3, and MLL3 were detected in 82% of DSRCT, which is significantly greater than previously reported. These alterations may have both prognostic and therapeutic implications.
Asunto(s)
Biomarcadores de Tumor/genética , Tumor Desmoplásico de Células Pequeñas Redondas/genética , Recurrencia Local de Neoplasia/genética , Translocación Genética/genética , Adolescente , Adulto , Anciano , Niño , Aberraciones Cromosómicas , Proteínas de Unión al ADN/genética , Tumor Desmoplásico de Células Pequeñas Redondas/diagnóstico , Tumor Desmoplásico de Células Pequeñas Redondas/patología , Femenino , Genoma Humano/genética , Humanos , Masculino , Persona de Mediana Edad , Proteína 3 Homóloga de MutS/genética , Recurrencia Local de Neoplasia/diagnóstico , Recurrencia Local de Neoplasia/patología , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/aislamiento & purificación , Pronóstico , Proteína EWS de Unión a ARN/genética , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/genética , Factores de Transcripción/genética , Proteína p53 Supresora de Tumor/genética , Proteínas WT1/genética , Adulto JovenRESUMEN
So far, there has been no effective cure for osteoporotic cortical bone, the most significant change in long bone structure during aging and the main cause of bone fragility fractures, because its underlying molecular and cellular mechanisms remain largely unknown. We used 3- and 15-mo-old mice as well as 15-mo-old mice treated with vehicle and gefitinib to evaluate structural, cellular, and molecular changes in cortical bone. We found that the senescence of osteoprogenitors was increased, whereas the expression of phosphorylated epidermal growth factor receptor (EGFR) on the endosteal surface of cortical bone down-regulated in middle-aged 15-mo-old mice compared with young 3-mo-old mice. Further decreasing EGFR signaling by gefitinib treatment in middle-aged mice resulted in promoted senescence of osteoprogenitors and accelerated cortical bone degeneration. Moreover, inhibiting EGFR signaling suppressed the expression of enhancer of zeste homolog 2 (Ezh2), the repressor of cell senescence-inducer genes, through ERK1/2 pathway, thereby promoting senescence in osteoprogenitors. Down-regulated EGFR signaling plays a physiologically significant role during aging by reducing Ezh2 expression, leading to the senescence of osteoprogenitors and the decline in bone formation on the endosteal surface of cortical bone.-Liu, G., Xie, Y., Su, J., Qin, H., Wu, H., Li, K., Yu, B., Zhang, X. The role of EGFR signaling in age-related osteoporosis in mouse cortical bone.
Asunto(s)
Hueso Cortical/metabolismo , Receptores ErbB/metabolismo , Osteoporosis/metabolismo , Transducción de Señal/fisiología , Envejecimiento/metabolismo , Animales , Senescencia Celular/fisiología , Regulación hacia Abajo/fisiología , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Femenino , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Ratones Endogámicos C57BL , Osteoblastos/metabolismo , Osteogénesis/fisiologíaRESUMEN
Clonal hematopoiesis (CH), characterized by the accumulation of acquired somatic mutations in the blood, is associated with an elevated risk of aging-related diseases and premature mortality in non-cancer populations. Patients who undergo autologous hematopoietic cell transplantation (HCT) are also at high risk of premature onset of aging-related conditions. Therefore, we examined the association between pretreatment CH and late-occurring (≥1 year) nonrelapse mortality (NRM) after HCT. We evaluated pathogenic and likely pathogenic CH variants (PVs) in 10 patients who developed NRM after HCT and in 29 HCT recipient controls matched by age at HCT ± 2 years (median, 64.6 years; range, 38.5 to 74.7 years), sex (79.5% male), diagnosis (61.5% with non-Hodgkin lymphoma, 18.0% with Hodgkin lymphoma, and 20.5% with multiple myeloma), and duration of follow-up. We analyzed mobilized hematopoietic stem cell DNA in samples collected before HCT using a custom panel of amplicons covering the coding exons of 79 myeloid-related genes associated with CH. PVs with allele fractions >2% were used for analyses. Cases were significantly more likely than controls to have CH (70% versus 24.1%; Pâ¯=â¯.002), to have ≥2 unique PVs (60% versus 6.9%; P < .001), and to have PVs with allelic fractions ≥10% (40% versus 3.4%; Pâ¯= .003). Here we provide preliminary evidence of an association between pre-HCT CH and NRM after HCT independent of chronologic age. Integration of CH analyses may improve the accuracy of existing pre-HCT risk prediction models, setting the stage for personalized risk assessment strategies and targeted treatments to optimally prevent or manage late complications associated with HCT.
Asunto(s)
Envejecimiento/metabolismo , Hematopoyesis , Trasplante de Células Madre Hematopoyéticas , Linfoma no Hodgkin , Mieloma Múltiple , Adulto , Factores de Edad , Anciano , Envejecimiento/patología , Autoinjertos , Femenino , Humanos , Linfoma no Hodgkin/metabolismo , Linfoma no Hodgkin/mortalidad , Linfoma no Hodgkin/terapia , Masculino , Persona de Mediana Edad , Mieloma Múltiple/metabolismo , Mieloma Múltiple/mortalidad , Mieloma Múltiple/patología , Estudios RetrospectivosRESUMEN
Bone loss in Staphylococcus aureus (S. aureus) osteomyelitis poses a serious challenge to orthopedic treatment. The present study aimed to elucidate how S. aureus infection in bone might induce bone loss. The C57BL/6 mice were injected with S. aureus (106 CFU/ml, 100 µl) or with the same amount of vehicle (control) via the tail vein. Microcomputed tomography (microCT) analysis showed bone loss progressing from week 1 to week 5 after infection, accompanied by a decreased number of osteocalcin-positive stained osteoblasts and the suppressed mRNA expression of Runx2 and osteocalcin. Transcriptome profiles of GSE30119 were downloaded and analyzed to determine the differences in expression of inflammatory factors between patients with S. aureus infected osteomyelitis and healthy controls, the data showed significantly higher mRNA expression of granulocyte colony-stimulating factor (G-CSF) in the whole blood from patients with S. aureus infection. Enzyme-linked immunosorbent assay (ELISA) analysis confirmed an increased level of G-CSF in the bone marrow and serum from S. aureus infected mice, which might have been due to the increased amount of F4/80+ macrophages. Interestingly, G-CSF neutralizing antibody treatment significantly rescued the bone loss after S. aureus infection, as evidenced by its roles in improving BV/TV and preserving osteocalcin- and osterix-positive stained cells. Importantly, we found that G-CSF level was significantly up-regulated in the serum from osteomyelitis patients infected by S. aureus Together, S. aureus infection might suppress the function of osteoblastic cells and induce progressive bone loss by up-regulating the level G-CSF, suggesting a therapeutic potential for G-CSF neutralization in combating bone loss in S. aureus osteomyelitis.
Asunto(s)
Remodelación Ósea , Factor Estimulante de Colonias de Granulocitos/metabolismo , Osteoblastos/metabolismo , Osteomielitis/metabolismo , Infecciones Estafilocócicas/metabolismo , Tibia/metabolismo , Adulto , Animales , Anticuerpos Neutralizantes/farmacología , Remodelación Ósea/efectos de los fármacos , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Femenino , Factor Estimulante de Colonias de Granulocitos/antagonistas & inhibidores , Factor Estimulante de Colonias de Granulocitos/inmunología , Humanos , Masculino , Ratones Endogámicos C57BL , Osteoblastos/efectos de los fármacos , Osteoblastos/microbiología , Osteomielitis/diagnóstico por imagen , Osteomielitis/tratamiento farmacológico , Osteomielitis/microbiología , Transducción de Señal , Infecciones Estafilocócicas/diagnóstico por imagen , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Tibia/diagnóstico por imagen , Tibia/efectos de los fármacos , Tibia/microbiología , Factores de Tiempo , Microtomografía por Rayos XRESUMEN
Autoreactive pathogenic T cells (Tpaths) and regulatory T cells (Tregs) express a distinct gene profiles; however, the genes and associated genetic/signaling pathways responsible for the functional determination of Tpaths vs. Tregs remain unknown. Here we show that Skp2, an E3 ubiquitin ligase that affects cell cycle control and death, plays a critical role in the function of diabetogenic Tpaths and Tregs. Down-regulation of Skp2 in diabetogenic Tpaths converts them into Foxp3-expressing Tregs. The suppressive function of the Tpath-converted Tregs is dependent on increased production of TGF-ß/IL-10, and these Tregs are able to inhibit spontaneous diabetes in NOD mice. Like naturally arising Foxp3(+) nTregs, the converted Tregs are anergic cells with decreased proliferation and activation-induced cell death. Skp2 down-regulation leads to Tpath-Treg conversion due at least in part to up-regulation of several genes involved in cell cycle control and genes in the Foxo family. Down-regulation of the cyclin-dependent kinase inhibitor p27 alone significantly attenuates the effect of Skp2 on Tpaths and reduces the suppressive function of converted Tregs; its effect is further improved with concomitant down-regulation of p21, Foxo1, and Foxo3. In comparison, Skp2 overexpression does not change Tpath function, but significantly decreases Foxp3 expression and abrogates the suppressive function of nTregs. These findings support the critical role of Skp2 in functional specification of Tpaths and Tregs, and demonstrate an important molecular mechanism mediating Skp2 function in balancing immune tolerance during autoimmune disease development.
Asunto(s)
Diabetes Mellitus Experimental/inmunología , Factores de Transcripción Forkhead/metabolismo , Proteínas Quinasas Asociadas a Fase-S/antagonistas & inhibidores , Linfocitos T Reguladores/inmunología , Linfocitos T/inmunología , Animales , Ratones , Ratones Endogámicos NOD , Ratones Transgénicos , Linfocitos T Reguladores/metabolismoRESUMEN
Both Foxp3(+) regulatory T cells (Tregs) and antigen-expanded Foxp3(-) Tregs play an important role in regulating immune responses as well as in preventing autoimmune diseases and graft rejection. Molecular mechanisms modulating Treg function remain largely unclear, however. We report here on the expression and function of an inhibitory killer cell Ig-like receptor, KIR3DL1, in a nonobese diabetic (NOD) mouse-derived autoantigen-specific Treg (2D2), which protects from type 1 diabetes (T1D) in adoptive transfer experiments. This gene is not expressed in T1D pathogenic T cells (Tpaths) or non-Tpath T cells. KIR genes are known to play an important role in regulating natural killer (NK) cell function, but their role in Tregs and T1D is unknown. To examine whether KIR3DL1 expression may modulate Treg function, we used shRNA to down-regulate KIR3DL1 expression (2D2-shKIR). We find that KIR3DL1 down-regulation enhances in vitro function, as measured by improved suppression of target cell proliferation. Antibody blockade of IL-10 but not IL-4 partially abrogated suppressive function. In vivo function is also improved. Adoptive transfer of 2D2-shKIR into 10-wk-old NOD mice prevented spontaneous insulitis and T1D, and the inhibitory effect was further improved if the cells were transferred earlier into 6-wk-old NOD mice. These studies indicate that KIR3DL1 expression may negatively regulate Treg function and suggest a previously undescribed target for improving immune tolerance for potential treatment of autoimmune diseases like T1D.
Asunto(s)
Autoantígenos/inmunología , Diabetes Mellitus Tipo 1/inmunología , Regulación hacia Abajo , Receptores KIR/inmunología , Linfocitos T Reguladores/inmunología , Animales , Técnicas de Silenciamiento del Gen , Ratones , Ratones Endogámicos NOD , Receptores KIR/genéticaRESUMEN
A 44-year-old male sustained trauma to his foot leading to a 5-cm defect of the first metatarsal bone and infection of the bone by Staphylococcus aureus. Osteotomy is the most suitable method for treating large metatarsal defects complicated with osteomyelitis, however few reports have been published on this challenging approach. In this case, osteotomy and external fixation for distraction were performed. Finally, the osteomyelitis of the patient was well controlled, the bone length was restored, and the patient could carry weight completely, and the treatment effect was satisfactory.
RESUMEN
Cutaneous T-cell lymphoma (CTCL) is an incurable and cosmetically disfiguring disease associated with microenvironmental signals. We investigated the effects of CD47 and PD-L1 immune checkpoint blockades, as a strategy for targeting both innate and adaptive immunity. CIBERSORT analysis identified the immune-cell composition in the CTCL tumor microenvironment and the immune checkpoint expression profile for each immune-cell gene cluster from CTCL lesions. We investigated the relationship between MYC and CD47 and PD-L1 expression and found that MYC short hairpin RNA knockdown and MYC functional suppression by TTI-621 (SIRPαFc) and anti-PD-L1 (durvalumab) in CTCL cell lines reduced the expression of CD47 and PDL1 mRNA and protein as measured by qPCR and flow cytometry, respectively. In vitro, blockade of the CD47-SIRPα interaction with TTI-621 increased the phagocytic activity of macrophages against CTCL cells and enhanced CD8+ T-cell-mediated killing in a mixed leucocyte reaction. Moreover, TTI-621 synergized with anti-PD-L1 in macrophages reprogram to M1-like phenotypes and inhibited CTCL cell growth. These effects were mediated by cell death-related pathways, including apoptosis, autophagy, and necroptosis. Collectively, our findings show that CD47 and PD-L1 are critical regulators of immune surveillance in CTCL and that dual targeting of CD47 and PD-L1 will provide insight into tumor immunotherapy for CTCL.
Asunto(s)
Linfoma Cutáneo de Células T , Neoplasias , Neoplasias Cutáneas , Humanos , Antígeno CD47/genética , Antígeno CD47/metabolismo , Linfoma Cutáneo de Células T/tratamiento farmacológico , Linfoma Cutáneo de Células T/genética , Inmunoglobulina G , Inmunoterapia , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Antígeno B7-H1/genética , Neoplasias/metabolismo , Microambiente TumoralRESUMEN
Studies have shown that human hair keratin (HHK) has no antigenicity and excellent mechanical properties. Schwann cells, as unique glial cells in the peripheral nervous system, can be induced by interleukin-1ß to secrete nerve growth factor, which promotes neural regeneration. Therefore, HHK with Schwann cells may be a more effective approach to repair nerve defects than HHK without Schwann cells. In this study, we established an artificial nerve graft by loading an HHK skeleton with activated Schwann cells. We found that the longitudinal HHK microfilament structure provided adhesion medium, space and direction for Schwann cells, and promoted Schwann cell growth and nerve fiber regeneration. In addition, interleukin-1ß not only activates Schwann cells, but also strengthens their activity and increases the expression of nerve growth factors. Activated Schwann cells activate macrophages, and activated macrophages secrete interleukin-1ß, which maintains the activity of Schwann cells. Thus, a beneficial cycle forms and promotes nerve repair. Furthermore, our studies have found that the newly constructed artificial nerve graft promotes the improvements in nerve conduction function and motor function in rats with sciatic nerve injury, and increases the expression of nerve injury repair factors fibroblast growth factor 2 and human transforming growth factor B receptor 2. These findings suggest that this artificial nerve graft effectively repairs peripheral nerve injury.
RESUMEN
Introduction: Colorectal cancer (CRC) remains a significant cause of cancer related mortality. Fat mass and obesity-associated protein (FTO) is a m6A mRNA demethylase that plays an oncogenic role in various malignancies. In this study we evaluated the role of FTO in CRC tumorigenesis. Methods: Cell proliferation assays were conducted in 6 CRC cell lines with the FTO inhibitor CS1 (50-3200 nM) (± 5-FU 5-80 mM) and after lentivirus mediated FTO knockdown. Cell cycle and apoptosis assays were conducted in HCT116 cells (24 h and 48 h, 290 nM CS1). Western blot and m6A dot plot assays were performed to assess CS1 inhibition of cell cycle proteins and FTO demethylase activity. Migration and invasion assays of shFTO cells and CS1 treated cells were performed. An in vivo heterotopic model of HCT116 cells treated with CS1 or with FTO knockdown cells was performed. RNA-seq was performed on shFTO cells to assess which molecular and metabolic pathways were impacted. RT-PCR was conducted on select genes down-regulated by FTO knockdown. Results: We found that the FTO inhibitor, CS1 suppressed CRC cell proliferation in 6 colorectal cancer cell lines and in the 5-Fluorouracil resistant cell line (HCT116-5FUR). CS1 induced cell cycle arrest in the G2/M phase by down regulation of CDC25C and promoted apoptosis of HCT116 cells. CS1 suppressed in vivo tumor growth in the HCT116 heterotopic model (p< 0.05). Lentivirus knockdown of FTO in HCT116 cells (shFTO) mitigated in vivo tumor proliferation and in vitro demethylase activity, cell growth, migration and invasion compared to shScr controls (p< 0.01). RNA-seq of shFTO cells compared to shScr demonstrated down-regulation of pathways related to oxidative phosphorylation, MYC and Akt/ mTOR signaling pathways. Discussion: Further work exploring the targeted pathways will elucidate precise downstream mechanisms that can potentially translate these findings to clinical trials.
RESUMEN
Cutaneous T cell lymphoma (CTCL) is a disfiguring and incurable disease characterized by skin-homing malignant T cells surrounded by immune cells that promote CTCL growth through an immunosuppressive tumor microenvironment (TME). Preliminary data from our phase I clinical trial of anti-programmed cell death ligand 1 (anti-PD-L1) combined with lenalidomide in patients with relapsed/refractory CTCL demonstrated promising clinical efficacy. In the current study, we analyzed the CTCL TME, which revealed a predominant PD-1+ M2-like tumor-associated macrophage (TAM) subtype with upregulated NF-κB and JAK/STAT signaling pathways and an aberrant cytokine and chemokine profile. Our in vitro studies investigated the effects of anti-PD-L1 and lenalidomide on PD-1+ M2-like TAMs. The combinatorial treatment synergistically induced functional transformation of PD-1+ M2-like TAMs toward a proinflammatory M1-like phenotype that gained phagocytic activity upon NF-κB and JAK/STAT inhibition, altered their migration through chemokine receptor alterations, and stimulated effector T cell proliferation. Lenalidomide was more effective than anti-PD-L1 in downregulation of the immunosuppressive IL-10, leading to decreased expression of both PD-1 and PD-L1. Overall, PD-1+ M2-like TAMs play an immunosuppressive role in CTCL. Anti-PD-L1 combined with lenalidomide provides a therapeutic strategy to enhance antitumor immunity by targeting PD-1+ M2-like TAMs in the CTCL TME.
Asunto(s)
Lenalidomida , Linfoma Cutáneo de Células T , Macrófagos Asociados a Tumores , Humanos , Inmunosupresores/farmacología , Lenalidomida/farmacología , Linfoma Cutáneo de Células T/tratamiento farmacológico , Linfoma Cutáneo de Células T/metabolismo , Linfoma Cutáneo de Células T/patología , Macrófagos/metabolismo , FN-kappa B/metabolismo , Receptor de Muerte Celular Programada 1 , Microambiente TumoralRESUMEN
STAT3 deficiency (STAT3-/-) in donor T cells prevents graft-versus-host disease (GVHD), but the impact on graft-versus-leukemia (GVL) activity and mechanisms of GVHD prevention remains unclear. Here, using murine models of GVHD, we show that STAT3-/- donor T cells induced only mild reversible acute GVHD while preserving GVL effects against nonsusceptible acute lymphoblastic leukemia (ALL) cells in a donor T cell dose-dependent manner. GVHD prevention depended on programmed death ligand 1/programmed cell death protein 1 (PD-L1/PD-1) signaling. In GVHD target tissues, STAT3 deficiency amplified PD-L1/PD-1 inhibition of glutathione (GSH)/Myc pathways that regulate metabolic reprogramming in activated T cells, with decreased glycolytic and mitochondrial ATP production and increased mitochondrial ROS production and dysfunction, leading to tissue-specific deletion of host-reactive T cells and prevention of GVHD. Mitochondrial STAT3 deficiency alone did not reduce GSH expression or prevent GVHD. In lymphoid tissues, the lack of host-tissue PD-L1 interaction with PD-1 reduced the inhibition of the GSH/Myc pathway despite reduced GSH production caused by STAT3 deficiency and allowed donor T cell functions that mediate GVL activity. Therefore, STAT3 deficiency in donor T cells augments PD-1 signaling-mediated inhibition of GSH/Myc pathways and augments dysfunction of T cells in GVHD target tissues while sparing T cells in lymphoid tissues, leading to prevention of GVHD while preserving GVL effects.