Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nature ; 623(7989): 1026-1033, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37993716

RESUMEN

Human immunodeficiency virus 1 (HIV-1) infection is initiated by binding of the viral envelope glycoprotein (Env) to the cell-surface receptor CD41-4. Although high-resolution structures of Env in a complex with the soluble domains of CD4 have been determined, the binding process is less understood in native membranes5-13. Here we used cryo-electron tomography to monitor Env-CD4 interactions at the membrane-membrane interfaces formed between HIV-1 and CD4-presenting virus-like particles. Env-CD4 complexes organized into clusters and rings, bringing the opposing membranes closer together. Env-CD4 clustering was dependent on capsid maturation. Subtomogram averaging and classification revealed that Env bound to one, two and finally three CD4 molecules, after which Env adopted an open state. Our data indicate that asymmetric HIV-1 Env trimers bound to one and two CD4 molecules are detectable intermediates during virus binding to host cell membranes, which probably has consequences for antibody-mediated immune responses and vaccine immunogen design.


Asunto(s)
Antígenos CD4 , Membrana Celular , Proteína gp120 de Envoltorio del VIH , VIH-1 , Multimerización de Proteína , Humanos , Vacunas contra el SIDA/química , Vacunas contra el SIDA/inmunología , Cápside/química , Cápside/metabolismo , Cápside/ultraestructura , Antígenos CD4/química , Antígenos CD4/metabolismo , Antígenos CD4/ultraestructura , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/metabolismo , Proteína gp120 de Envoltorio del VIH/ultraestructura , Infecciones por VIH/virología , VIH-1/química , VIH-1/ultraestructura , Virión/química , Virión/metabolismo , Virión/ultraestructura
2.
PLoS Pathog ; 15(1): e1007565, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30668610

RESUMEN

Many bacterial pathogens and symbionts use type III secretion machines to interact with their hosts by injecting bacterial effector proteins into host target cells. A central component of this complex machine is the cytoplasmic sorting platform, which orchestrates the engagement and preparation of type III secreted proteins for their delivery to the needle complex, the substructure of the type III secretion system that mediates their passage through the bacterial envelope. The sorting platform is thought to be a dynamic structure whose components alternate between assembled and disassembled states. However, how this dynamic behavior is controlled is not understood. In S. Typhimurium a core component of the sorting platform is SpaO, which is synthesized in two tandemly translated products, a full length (SpaOL) and a short form (SpaOS) composed of the C-terminal 101 amino acids. Here we show that in the absence of SpaOS the assembly of the needle substructure of the needle complex, which requires a functional sorting platform, can still occur although with reduced efficiency. Consistent with this observation, in the absence of SpaOS secretion of effectors proteins, which requires a fully assembled injectisome, is only slightly compromised. In the absence of SpaOS we detect a significant number of fully assembled needle complexes that are not associated with fully assembled sorting platforms. We also find that although binding of SpaOL to SpaOS can be detected in the absence of other components of the sorting platform, this interaction is not detected in the context of a fully assembled sorting platform suggesting that SpaOS may not be a core structural component of the sorting platform. Consistent with this observation we find that SpaOS and OrgB, a component of the sorting platform, share the same binding surface on SpaOL. We conclude that SpaOS regulates the assembly of the sorting platform during type III secretion.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Proteínas Bacterianas/fisiología , Proteínas de la Membrana/fisiología , Isoformas de Proteínas , Transporte de Proteínas/fisiología , Salmonella/metabolismo , Salmonella/patogenicidad , Salmonella typhimurium/metabolismo , Sistemas de Secreción Tipo III/fisiología
3.
Biochem Soc Trans ; 49(5): 2081-2089, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34495335

RESUMEN

Bacteria direct their movement in respond to gradients of nutrients and other stimuli in the environment through the chemosensory system. The behavior is mediated by chemosensory arrays that are made up of thousands of proteins to form an organized array near the cell pole. In this review, we briefly introduce the architecture and function of the chemosensory array and its core signaling unit. We describe the in vivo and in vitro systems that have been used for structural studies of chemosensory array by cryoEM, including reconstituted lipid nanodiscs, 2D lipid monolayer arrays, lysed bacterial ghosts, bacterial minicells and native bacteria cells. Lastly, we review recent advances in structural analysis of chemosensory arrays using state-of-the-art cryoEM and cryoET methodologies, focusing on the latest developments and insights with a perspective on current challenges and future directions.


Asunto(s)
Quimiotaxis/fisiología , Microscopía por Crioelectrón/métodos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Histidina Quinasa/metabolismo , Proteínas Quimiotácticas Aceptoras de Metilo/metabolismo , Transducción de Señal/fisiología , Tomografía con Microscopio Electrónico/métodos , Proteínas de Escherichia coli/química , Histidina Quinasa/química , Proteínas Quimiotácticas Aceptoras de Metilo/química , Modelos Moleculares , Multimerización de Proteína
4.
PLoS Biol ; 16(11): e3000050, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30412577

RESUMEN

Periplasmic flagella are essential for the distinct morphology and motility of spirochetes. A flagella-specific type III secretion system (fT3SS) composed of a membrane-bound export apparatus and a cytosolic ATPase complex is responsible for the assembly of the periplasmic flagella. Here, we deployed cryo-electron tomography (cryo-ET) to visualize the fT3SS machine in the Lyme disease spirochete Borrelia burgdorferi. We show, for the first time, that the cytosolic ATPase complex is attached to the flagellar C-ring through multiple spokes to form the "spoke and hub" structure in B. burgdorferi. This structure not only strengthens structural rigidity of the round-shaped C-ring but also appears to rotate with the C-ring. Our studies provide structural insights into the unique mechanisms underlying assembly and rotation of the periplasmic flagella and may provide the basis for the development of novel therapeutic strategies against several pathogenic spirochetes.


Asunto(s)
Adenosina Trifosfatasas/ultraestructura , Borrelia burgdorferi/fisiología , Flagelos/fisiología , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/fisiología , Proteínas Bacterianas/química , Borrelia burgdorferi/metabolismo , Citoplasma , Tomografía con Microscopio Electrónico/métodos , Flagelos/metabolismo , Flagelos/ultraestructura , Periplasma/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Sistemas de Secreción Tipo III/ultraestructura
5.
Mol Microbiol ; 111(6): 1652-1670, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30883947

RESUMEN

Unlike external flagellated bacteria, spirochetes have periplasmic flagella (PF). Very little is known about how PF are assembled within the periplasm of spirochaetal cells. Herein, we report that FliD (BB0149), a flagellar cap protein (also named hook-associated protein 2), controls flagellin stability and flagellar filament assembly in the Lyme disease spirochete Borrelia burgdorferi. Deletion of fliD leads to non-motile mutant cells that are unable to assemble flagellar filaments and pentagon-shaped caps (10 nm in diameter, 12 nm in length). Interestingly, FlaB, a major flagellin protein of B. burgdorferi, is degraded in the fliD mutant but not in other flagella-deficient mutants (i.e., in the hook, rod, or MS-ring). Biochemical and genetic studies reveal that HtrA, a serine protease of B. burgdorferi, controls FlaB turnover. Specifically, HtrA degrades unfolded but not polymerized FlaB, and deletion of htrA increases the level of FlaB in the fliD mutant. Collectively, we propose that the flagellar cap protein FliD promotes flagellin polymerization and filament growth in the periplasm. Deletion of fliD abolishes this process, which leads to leakage of unfolded FlaB proteins into the periplasm where they are degraded by HtrA, a protease that prevents accumulation of toxic products in the periplasm.


Asunto(s)
Proteínas Bacterianas/química , Borrelia burgdorferi/química , Flagelos/química , Flagelina/química , Periplasma/química , Serina Endopeptidasas/química , Proteínas Bacterianas/genética , Borrelia burgdorferi/genética , Flagelos/genética , Mutación , Polímeros/química , Pliegue de Proteína , Serina Endopeptidasas/genética
6.
J Bacteriol ; 199(3): e00695-16, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27849173

RESUMEN

Helicobacter pylori is a bacterial pathogen that can cause many gastrointestinal diseases including ulcers and gastric cancer. A unique chemotaxis-mediated motility is critical for H. pylori to colonize in the human stomach and to establish chronic infection, but the underlying molecular mechanisms are not well understood. Here we employ cryo-electron tomography to reveal detailed structures of the H. pylori cell envelope including the sheathed flagella and chemotaxis arrays. Notably, H. pylori possesses a distinctive periplasmic cage-like structure with 18-fold symmetry. We propose that this structure forms a robust platform for recruiting 18 torque generators, which likely provide the higher torque needed for swimming in high-viscosity environments. We also reveal a series of key flagellar assembly intermediates, providing structural evidence that flagellar assembly is tightly coupled with biogenesis of the membrane sheath. Finally, we determine the structure of putative chemotaxis arrays at the flagellar pole, which have implications for how direction of flagellar rotation is regulated. Together, our pilot cryo-ET studies provide novel structural insights into the unipolar flagella of H. pylori and lay a foundation for a better understanding of the unique motility of this organism. IMPORTANCE: Helicobacter pylori is a highly motile bacterial pathogen that colonizes approximately 50% of the world's population. H. pylori can move readily within the viscous mucosal layer of the stomach. It has become increasingly clear that its unique flagella-driven motility is essential for successful gastric colonization and pathogenesis. Here we use advanced imaging techniques to visualize novel in situ structures with unprecedented detail in intact H. pylori cells. Remarkably, H. pylori possesses multiple unipolar flagella, which are driven by one of the largest flagellar motors found in bacteria. These large motors presumably provide higher torque needed by the bacterial pathogens to navigate in viscous environment of the human stomach.

7.
mBio ; 14(5): e0079323, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37772839

RESUMEN

IMPORTANCE: Bacterial chemotaxis is a ubiquitous behavior that enables cell movement toward or away from specific chemicals. It serves as an important model for understanding cell sensory signal transduction and motility. Characterization of the molecular mechanisms underlying chemotaxis is of fundamental interest and requires a high-resolution structural picture of the sensing machinery, the chemosensory array. In this study, we combine cryo-electron tomography and molecular simulation to present the complete structure of the core signaling unit, the basic building block of chemosensory arrays, from Escherichia coli. Our results provide new insight into previously poorly-resolved regions of the complex and offer a structural basis for designing new experiments to test mechanistic hypotheses.


Asunto(s)
Quimiotaxis , Proteínas de Escherichia coli , Escherichia coli/genética , Escherichia coli/química , Proteínas Quimiotácticas Aceptoras de Metilo/química , Transducción de Señal , Proteínas de Escherichia coli/química , Proteínas Bacterianas/química
8.
Nanoscale ; 13(3): 1387-1397, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33350419

RESUMEN

Gene vectors are nucleic acids that carry genetic materials or gene editing devices into cells to exert the sustained production of therapeutic proteins or to correct erroneous genes of the cells. However, the cell membrane sets a barrier for the entry of nucleic acid molecules, and nucleic acids are easily degraded or neutralized when they are externally administered into the body. Carriers to encapsulate, protect and deliver nucleic acid molecules therefore are essential for clinical applications of gene therapy. The secreted organelles, exosomes, which naturally mediate the communications between cells, have been engineered to encapsulate and deliver nucleic acids to the desired tissues and cells. The fusion of exosomes with liposomes can increase the loading capacity and also retain the targeting capability of exosomes. Altogether, this review summarizes the most recent designs of exosome-based applications for gene delivery and their future perspectives in gene therapy.


Asunto(s)
Exosomas , Sistemas de Liberación de Medicamentos , Exosomas/genética , Terapia Genética , Vectores Genéticos , Liposomas
9.
Front Genet ; 12: 673286, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054927

RESUMEN

The emerging clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated system (Cas) gene-editing system represents a promising tool for genome manipulation. However, its low intracellular delivery efficiency severely compromises its use and potency for clinical applications. Nanocarriers, such as liposomes, polymers, and inorganic nanoparticles, have shown great potential for gene delivery. The remarkable development of nanoparticles as non-viral carriers for the delivery of the CRISPR/Cas9 system has shown great promise for therapeutic applications. In this review, we briefly summarize the delivery components of the CRISPR/Cas9 system and report on the progress of nano-system development for CRISPR/Cas9 delivery. We also compare the advantages of various nano-delivery systems and their applications to deliver CRISPR/Cas9 for disease treatment. Nano-delivery systems can be modified to fulfill the tasks of targeting cells or tissues. We primarily emphasize the novel exosome-based CRISPR/Cas9 delivery system. Overall, we review the challenges, development trends, and application prospects of nanoparticle-based technology for CRISPR/Cas9 delivery.

10.
Naunyn Schmiedebergs Arch Pharmacol ; 393(3): 501-510, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31659404

RESUMEN

5-Nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) is a non-specific chloride channel blocker. Peritoneal adhesion is an inevitable complication of abdominal surgery and remains an important clinical problem, leading to chronic pain, intestinal obstruction, and female infertility. The aim of this study is to observe the effects of NPPB on peritoneal adhesions and uncover the underlying mechanism. The formation of postoperative peritoneal adhesions was induced by mechanical injury to the peritoneum of rats. MTT assay and wound-healing assay were used to evaluate proliferation and migration of primary cultured adhesion fibroblasts (AFB) respectively. Whole-cell chloride currents were measured using a fully automated patch-clamp workstation. Cell volume changes were monitored by light microscopy and video imaging. Our results demonstrated that NPPB could significantly prevent the formation of peritoneal adhesion in rats and inhibit the proliferation of AFB in a concentration-dependent manner. NPPB also reduced the migration of AFB cells with an IC50 of 53.09 µM. A 47% hypotonic solution successfully activated the ICl,vol in AFB cells. The current could be blocked by extracellular treatment with NPPB. Moreover, 100 µM NPPB almost completely eliminated the capacity of regulatory volume decrease (RVD) in these cells. These data indicate that NPPB could prevent the formation of postoperative peritoneal adhesions. The possible mechanism may be through the inhibition of the proliferation and migration of AFB cells by modulating ICl,vol and cell volume. These results suggest a potential clinical use of NPPB for preventing the formation of peritoneal adhesions.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Canales de Cloruro/antagonistas & inhibidores , Nitrobenzoatos/uso terapéutico , Peritoneo/efectos de los fármacos , Complicaciones Posoperatorias/tratamiento farmacológico , Adherencias Tisulares/tratamiento farmacológico , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Movimiento Celular/fisiología , Células Cultivadas , Canales de Cloruro/fisiología , Fibroblastos/efectos de los fármacos , Fibroblastos/fisiología , Nitrobenzoatos/farmacología , Peritoneo/fisiopatología , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/fisiopatología , Ratas , Ratas Sprague-Dawley , Adherencias Tisulares/etiología , Adherencias Tisulares/fisiopatología
11.
Methods Mol Biol ; 1729: 187-199, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29429093

RESUMEN

Bacterial chemoreceptors form a highly ordered array in concert with the CheA kinase and the CheW coupling protein. The precise architecture of the array is responsible for high sensitivity, high dynamic range, and strong amplification of chemotaxis signaling. Cryo-electron tomography (cryo-ET) has emerged as a unique tool to visualize bacterial chemotaxis arrays at molecular level. Here we describe a detailed cryo-ET and subtomogram averaging procedure to determine in situ structure of the chemoreceptor arrays in Salmonella minicells. The procedure should be readily applicable to visualize other large macromolecular assemblies in their cellular context.


Asunto(s)
Proteínas Bacterianas/ultraestructura , Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Histidina Quinasa/ultraestructura , Salmonella enterica/ultraestructura , Factores Quimiotácticos/química , Quimiotaxis , Salmonella enterica/metabolismo , Transducción de Señal
12.
Int J Ophthalmol ; 11(11): 1821-1828, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30450314

RESUMEN

AIM: To quantitatively evaluate the effect of a simulated smog environment on human visual function by psychophysical methods. METHODS: The smog environment was simulated in a 40×40×60 cm3 glass chamber filled with a PM2.5 aerosol, and 14 subjects with normal visual function were examined by psychophysical methods with the foggy smog box placed in front of their eyes. The transmission of light through the smog box, an indication of the percentage concentration of smog, was determined with a luminance meter. Visual function under different smog concentrations was evaluated by the E-visual acuity, crowded E-visual acuity and contrast sensitivity. RESULTS: E-visual acuity, crowded E-visual acuity and contrast sensitivity were all impaired with a decrease in the transmission rate (TR) according to power functions, with invariable exponents of -1.41, -1.62 and -0.7, respectively, and R2 values of 0.99 for E and crowded E-visual acuity, 0.96 for contrast sensitivity. Crowded E-visual acuity decreased faster than E-visual acuity. There was a good correlation between the TR, extinction coefficient and visibility under heavy-smog conditions. CONCLUSION: Increases in smog concentration have a strong effect on visual function.

13.
Methods Mol Biol ; 1593: 229-242, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28389958

RESUMEN

The bacterial flagellar motor is a large multi-component molecular machine. Structural determination of such a large complex is often challenging and requires extensive structural analysis in situ. Cryo-electron tomography (cryo-ET) has emerged as a powerful technique that enables us to visualize intact flagellar motors in cells with unprecedented details. Here, we detail the procedure beginning with sample preparation, followed by data acquisition, tomographic reconstruction, sub-tomogram analysis, and ultimately visualization of the intact spirochetal flagellar motor in Borrelia burgdorferi. The procedure is applicable to visualize other molecular machinery in bacteria or other organisms.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Motoras Moleculares/metabolismo , Borrelia burgdorferi/metabolismo , Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Flagelos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA