Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Circ Res ; 134(2): 203-222, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38166414

RESUMEN

BACKGROUND: Angiogenesis, which plays a critical role in embryonic development and tissue repair, is controlled by a set of angiogenic signaling pathways. As a TF (transcription factor) belonging to the basic helix-loop-helix family, HEY (hairy/enhancer of split related with YRPW motif)-1 (YRPW motif, abbreviation of 4 highly conserved amino acids in the motif) has been identified as a key player in developmental angiogenesis. However, the precise mechanisms underlying HEY1's actions in angiogenesis remain largely unknown. Our previous studies have suggested a potential role for posttranslational SUMOylation in the dynamic regulation of vascular development and organization. METHODS: Immunoprecipitation, mass spectrometry, and bioinformatics analysis were used to determine the biochemical characteristics of HEY1 SUMOylation. The promoter-binding capability of HEY1 was determined by chromatin immunoprecipitation, dual luciferase, and electrophoretic mobility shift assays. The dimerization pattern of HEY1 was determined by coimmunoprecipitation. The angiogenic capabilities of endothelial cells were assessed by CCK-8 (cell counting kit-8), 5-ethynyl-2-deoxyuridine staining, wound healing, transwell, and sprouting assays. Embryonic and postnatal vascular growth in mouse tissues, matrigel plug assay, cutaneous wound healing model, oxygen-induced retinopathy model, and tumor angiogenesis model were used to investigate the angiogenesis in vivo. RESULTS: We identified intrinsic endothelial HEY1 SUMOylation at conserved lysines by TRIM28 (tripartite motif containing 28) as the unique E3 ligase. Functionally, SUMOylation facilitated HEY1-mediated suppression of angiogenic RTK (receptor tyrosine kinase) signaling and angiogenesis in primary human endothelial cells and mice with endothelial cell-specific expression of wild-type HEY1 or a SUMOylation-deficient HEY1 mutant. Mechanistically, SUMOylation facilitates HEY1 homodimer formation, which in turn preserves HEY1's DNA-binding capability via recognition of E-box promoter elements. Therefore, SUMOylation maintains HEY1's function as a repressive TF controlling numerous angiogenic genes, including RTKs and Notch pathway components. Proangiogenic stimuli induce HEY1 deSUMOylation, leading to heterodimerization of HEY1 with HES (hairy and enhancer of split)-1, which results in ineffective DNA binding and loss of HEY1's angiogenesis-suppressive activity. CONCLUSIONS: Our findings demonstrate that reversible HEY1 SUMOylation is a molecular mechanism that coordinates endothelial angiogenic signaling and angiogenesis, both in physiological and pathological milieus, by fine-tuning the transcriptional activity of HEY1. Specifically, SUMOylation facilitates the formation of the HEY1 transcriptional complex and enhances its DNA-binding capability in endothelial cells.


Asunto(s)
Células Endoteliales , Sumoilación , Animales , Humanos , Ratones , Angiogénesis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN/metabolismo , Células Endoteliales/metabolismo
2.
Circ Res ; 133(6): 508-531, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37589160

RESUMEN

BACKGROUND: Hypoxia is a major cause and promoter of pulmonary hypertension (PH), a representative vascular remodeling disease with poor prognosis and high mortality. However, the mechanism underlying how pulmonary arterial system responds to hypoxic stress during PH remains unclear. Endothelial mitochondria are considered signaling organelles on oxygen tension. Results from previous clinical research and our studies suggested a potential role of posttranslational SUMOylation (small ubiquitin-like modifier modification) in endothelial mitochondria in hypoxia-related vasculopathy. METHODS: Chronic hypoxia mouse model and Sugen/hypoxia rat model were employed as PH animal models. Mitochondrial morphology and subcellular structure were determined by transmission electron and immunofluorescent microscopies. Mitochondrial metabolism was determined by mitochondrial oxygen consumption rate and extracellular acidification rate. SUMOylation and protein interaction were determined by immunoprecipitation. RESULTS: The involvement of SENP1 (sentrin-specific protease 1)-mediated SUMOylation in mitochondrial remodeling in the pulmonary endothelium was identified in clinical specimens of hypoxia-related PH and was verified in human pulmonary artery endothelial cells under hypoxia. Further analyses in clinical specimens, hypoxic rat and mouse PH models, and human pulmonary artery endothelial cells and human embryonic stem cell-derived endothelial cells revealed that short-term hypoxia-induced SENP1 translocation to endothelial mitochondria to regulate deSUMOylation (the reversible process of SUMOylation) of mitochondrial fission protein FIS1 (mitochondrial fission 1), which facilitated FIS1 assembling with fusion protein MFN2 (mitofusin 2) and mitochondrial gatekeeper VDAC1 (voltage-dependent anion channel 1), and the membrane tethering activity of MFN2 by enhancing its oligomerization. Consequently, FIS1 deSUMOylation maintained the mitochondrial integrity and endoplasmic reticulum-mitochondria calcium communication across mitochondrial-associated membranes, subsequently preserving pulmonary endothelial function and vascular homeostasis. In contrast, prolonged hypoxia disabled the FIS1 deSUMOylation by diminishing the availability of SENP1 in mitochondria via inducing miR (micro RNA)-138 and consequently resulted in mitochondrial dysfunction and metabolic reprogramming in pulmonary endothelium. Functionally, introduction of viral-packaged deSUMOylated FIS1 within pulmonary endothelium in mice improved pulmonary endothelial dysfunction and hypoxic PH development, while knock-in of SUMO (small ubiquitin-like modifier)-conjugated FIS1 in mice exaggerated the diseased cellular and tissue phenotypes. CONCLUSIONS: By maintaining endothelial mitochondrial homeostasis, deSUMOylation of FIS1 adaptively preserves pulmonary endothelial function against hypoxic stress and consequently protects against PH. The FIS1 deSUMOylation-SUMOylation transition in pulmonary endothelium is an intrinsic pathogenesis of hypoxic PH.


Asunto(s)
Hipertensión Pulmonar , Enfermedades Vasculares , Humanos , Ratones , Ratas , Animales , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/prevención & control , Células Endoteliales , Mitocondrias , Modelos Animales de Enfermedad , Endotelio , Ubiquitinas , Proteínas de la Membrana , Proteínas Mitocondriales
3.
Proc Natl Acad Sci U S A ; 119(26): e2202631119, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35733256

RESUMEN

Angiogenesis contributes fundamentally to embryonic development, tissue homeostasis, and wound healing. Basic fibroblast growth factor (FGF2) is recognized as the first proangiogenic molecule discovered, and it facilitates angiogenesis by activating FGF receptor 1 (FGFR1) signaling in endothelial cells. However, the precise roles of FGFR and the FGF/FGFR signaling axis in angiogenesis remain unclear, especially because of the contradictory phenotypes of in vivo FGF and FGFR gene deficiency models. Our previous study results suggested a potential role of posttranslational small ubiquitin-like modifier modification (SUMOylation), with highly dynamic regulatory features, in vascular development and disorder. Here, we identified SENP1-regulated endothelial FGFR1 SUMOylation at conserved lysines responding to proangiogenic stimuli, while SENP1 functioned as the deSUMOylase. Hypoxia-enhanced FGFR1 SUMOylation restricted the tyrosine kinase activation of FGFR1 by modulating the dimerization of FGFR1 and FGFR1 binding with its phosphatase PTPRG. Consequently, it facilitated the recruitment of FRS2α to VEGFR2 but limited additional recruitment of FRS2α to FGFR1, supporting the activation of VEGFA/VEGFR2 signaling in endothelial cells. Furthermore, SUMOylation-defective mutation of FGFR1 resulted in exaggerated FGF2/FGFR1 signaling but suppressed VEGFA/VEGFR2 signaling and the angiogenic capabilities of endothelial cells, which were rescued by FRS2α overexpression. Reduced angiogenesis and endothelial sprouting in mice bearing an endothelial-specific, FGFR1 SUMOylation-defective mutant confirmed the functional significance of endothelial FGFR1 SUMOylation in vivo. Our findings identify the reversible SUMOylation of FGFR1 as an intrinsic fine-tuned mechanism in coordinating endothelial angiogenic signaling during neovascularization; SENP1-regulated FGFR1 SUMOylation and deSUMOylation controls the competitive recruitment of FRS2α by FGFR1 and VEGFR2 to switch receptor-complex formation responding to hypoxia and normoxia angiogenic environments.


Asunto(s)
Células Endoteliales , Neovascularización Fisiológica , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos , Sumoilación , Animales , Células Endoteliales/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Hipoxia/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Mutación , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Sumoilación/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
4.
Acta Pharmacol Sin ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802569

RESUMEN

Graft-versus-host disease (GVHD), an immunological disorder that arises from donor T cell activation through recognition of host alloantigens, is the major limitation in the application of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Traditional immunosuppressive agents can relieve GVHD, but they induce serious side effects. It is highly required to explore alternative therapeutic strategy. Human amniotic epithelial stem cells (hAESCs) were recently considered as an ideal source for cell therapy with special immune regulatory property. In this study, we evaluated the therapeutic role of hAESCs in the treatment of GVHD, based on our previous developed cGMP-grade hAESCs product. Humanized mouse model of acute GVHD (aGVHD) was established by injection of huPBMCs via the tail vein. For prevention or treatment of aGVHD, hAESCs were injected to the mice on day -1 or on day 7 post-PBMC infusion, respectively. We showed that hAESCs infusion significantly alleviated the disease phenotype, increased the survival rate of aGVHD mice, and ameliorated pathological injuries in aGVHD target organs. We demonstrated that hAESCs directly induced CD4+ T cell polarization, in which Th1 and Th17 subsets were downregulated, and Treg subset was elevated. Correspondingly, the levels of a series of pro-inflammatory cytokines were reduced while the levels of the anti-inflammatory cytokines were upregulated in the presence of hAESCs. We found that hAESCs regulated CD4+ subset polarization in a paracrine mode, in which TGFß and PGE2 were selectively secreted to mediate Treg elevation and Th1/Th17 inhibition, respectively. In addition, transplanted hAESCs preserved the graft-versus-leukemia (GVL) effect by inhibiting leukemia cell growth. More intriguingly, hAESCs infusion in HSCT patients displayed potential anti-GVHD effect with no safety concerns and confirmed the immunoregulatory mechanisms in the preclinical study. We conclude that hAESCs infusion is a promising therapeutic strategy for post-HSCT GVHD without compromising the GVL effect. The clinical trial was registered at www.clinicaltrials.gov as #NCT03764228.

5.
Opt Express ; 30(16): 28312-28324, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36299030

RESUMEN

We propose and implement a free-space optical (FSO) communication system based on few-mode heterodyne detection that can effectively suppress atmospheric turbulence effects. The experimental results show that the received power gain of the FSO communication system using six-mode fibres is about 6 dB over that using SMF under moderate to strong turbulence conditions.In addition, we have built a coherent detection system for space laser communications with few-mode heterodyne detection and reception, and verified the compensation of atmospheric turbulence effects by the few-mode heterodyne detection and reception technique. Experimental results show that the proposed scheme improves the power budget by 4∼5dB over the single-mode heterodyne coherent reception scheme at BER = 3.8×10-3 under moderate to strong turbulence conditions.

6.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36361694

RESUMEN

Dimethylallyl diphosphate (DMAPP) is a key intermediate metabolite in the synthesis of isoprenoids and is also the prenyl donor for biosynthesizing prenylated flavonoids. However, it is difficult to prepare DMAPP via chemical and enzymatic methods. In this study, three promiscuous kinases from Shigella flexneri (SfPK), Escherichia coli (EcPK), and Saccharomyces cerevisiae (ScPK) and three isopentenyl phosphate kinases from Methanolobus tindarius (MtIPK), Methanothermobacter thermautotrophicus str. Delta H (MthIPK), and Arabidopsis thaliana (AtIPK) were cloned and expressed in Escherichia coli. The enzymatic properties of recombinant enzymes were determined. The Kcat/Km value of SfPK for DMA was 6875 s-1 M-1, which was significantly higher than those of EcPK and ScPK. The Kcat/Km value of MtIPK for DMAP was 402.9 s-1 M-1, which was ~400% of that of MthIPK. SfPK was stable at pH 7.0-9.5 and had a 1 h half-life at 65 °C. MtIPK was stable at pH 6.0-8.5 and had a 1 h half-life at 50 °C. The stability of SfPK and MtIPK was better than that of the other enzymes. Thus, SfPK and MtIPK were chosen to develop a one-pot enzymatic cascade for producing DMAPP from DMA because of their catalytic efficiency and stability. The optimal ratio between SfPK and MtIPK was 1:8. The optimal pH and temperature for the one-pot enzymatic cascade were 7.0 and 35 °C, respectively. The optimal concentrations of ATP and DMA were 10 and 80 mM, respectively. Finally, maximum DMAPP production reached 1.23 mM at 1 h under optimal conditions. Therefore, the enzymatic method described herein for the biosynthesis of DMAPP from DMA can be widely used for the synthesis of isoprenoids and prenylated flavonoids.


Asunto(s)
Hemiterpenos , Fosfatos , Fosfatos/metabolismo , Escherichia coli/metabolismo , Organofosfatos/metabolismo , Terpenos/metabolismo , Flavonoides/metabolismo
7.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35955866

RESUMEN

The loss of photoreceptors is a major event of retinal degeneration that accounts for most cases of untreatable blindness globally. To date, there are no efficient therapeutic approaches to treat this condition. In the present study, we aimed to investigate whether human amniotic epithelial stem cells (hAESCs) could serve as a novel seed cell source of photoreceptors for therapy. Here, a two-step treatment with combined Wnt, Nodal, and BMP inhibitors, followed by another cocktail of retinoic acid, taurine, and noggin induced photoreceptor-like cell differentiation of hAESCs. The differentiated cells demonstrated the morphology and signature marker expression of native photoreceptor cells and, intriguingly, bore very low levels of major histocompatibility complex (MHC) class II molecules and a high level of non-classical MHC class I molecule HLA-G. Importantly, subretinal transplantation of the hAESCs-derived PR-like cells leads to partial restoration of visual function and retinal structure in Royal College of Surgeon (RCS) rats, the classic preclinical model of retinal degeneration. Together, our results reveal hAESCs as a potential source of functional photoreceptor cells; the hAESCs-derived photoreceptor-like cells could be a promising cell-replacement candidate for therapy of retinal degeneration diseases.


Asunto(s)
Degeneración Retiniana , Amnios/metabolismo , Animales , Humanos , Células Fotorreceptoras/metabolismo , Ratas , Retina/metabolismo , Degeneración Retiniana/metabolismo , Células Madre/metabolismo
8.
BMC Genomics ; 22(1): 157, 2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33676413

RESUMEN

BACKGROUND: Growth performance is significant in broiler production. In the growth process of broilers, gene expression varies at different growth stages. However, limited research has been conducted on the molecular mechanisms of muscle growth and development in yellow-feathered male chickens. RESULTS: In the study, we used RNA-seq to study the transcriptome of the breast muscle of male Jinghai yellow chickens at 4 (M4F), 8 (M8F) and 12 weeks (M12F) of age. The results showed that 4608 differentially expressed genes (DEGs) were obtained by comparison in pairs of the three groups with Fold Change (FC) ≥ 2 and False Discovery Rate (FDR) ≤ 0.05, and 83, 3445 and 3903 DEGs were obtained separately from M4FvsM8F, M4FvsM12F and M8FvsM12F. Six genes were found as co-differentially expressed in the three age groups, namely SNCG, MYH1A, ARHGDIB, ENSGALG00000031598, ENSGALG00000035660 and ENSGALG00000030559. The GO analysis showed that 0, 304 and 408 biological process (BP) were significantly enriched in M4FvsM8F, M4FvsM12F and M8FvsM12F groups, respectively. KEGG pathway enrichment showed that 1, 2, 4 and 4 pathways were significantly enriched in M4FvsM8F, M4FvsM12F, M8FvsM12F and all DEGs, respectively. They were steroid biosynthesis, carbon metabolism, focal adhesion, cytokine-cytokine receptor interaction, biosynthesis of amino acids and salmonella infection. We constructed short hairpin RNA (shRNA) to interfere the differentially expressed gene RAC2 in DF-1 cells and detected mRNA and protein expression of the downstream genes PAK1 and MAPK8. Results of qPCR showed that RAC2, PAK1 and MAPK8 mRNA expression significantly decreased in the shRAC2-2 group compared with the negative control (NC) group. Western Blot (WB) results showed that the proteins of RAC2, PAK1 and MAPK8 also decreased in the shRAC2-2 group. Cell Counting Kit-8 (CCK-8) and 5-Ethynyl-2'-deoxyuridine (EdU) assay both showed that the proliferation of DF-1 cells was significantly inhibited after transfection of shRAC2-2. CONCLUSIONS: The results of RNA-seq revealed genes, BP terms and KEGG pathways related to growth and development of male Jinghai yellow chickens, and they would have important guiding significance to our production practice. Further research suggested that RAC2 might regulate cell proliferation by regulating PAKs/MAPK8 pathway and affect growth of chickens.


Asunto(s)
Fenómenos Biológicos , Transcriptoma , Animales , Proliferación Celular/genética , Pollos/genética , Fibroblastos , Perfilación de la Expresión Génica , Masculino
9.
Bioorg Chem ; 112: 104926, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33930665

RESUMEN

Orientin and vitexin, important components of bamboo-leaf extracts, are C-glycosylflavones which exhibit a number of interesting biological properties. In this work, we developed an efficient biocatalytic cascade for orientin and vitexin production consisting of Trollius chinensis C-glycosyltransferase (TcCGT) and Glycine max sucrose synthase (GmSUS). In order to relieve the bottleneck of the biocatalytic cascade, the biocatalytic efficiency, reaction condition compatibilities and the ratio of the enzymes were determined. We found that the specific activity of TcCGT was significantly influenced by enzyme dose and Triton X-100 or Tween 20 (0.2%). Co-culture of BL21-TcCGT-Co and BL21-GmSUS-Co affected the catalytic efficiency of TcCGT and GmSUS, and the maximum orientin production rate reached 47 µM/min at the inoculation ratio of 9:1. The optimal pH and temperature for the biocatalytic cascade were pH 7.5 and 30 °C, respectively. Moreover, the high dose of the enzymes can improve the tolerance of biocatalytic cascade to substrate inhibition in the one-pot reaction. By using a fed-batch strategy, maximal titers of orientin and vitexin reached 7090 mg/L with a corresponding molar conversion of 98.7% and 5050 mg/L with a corresponding molar conversion of 97.3%, respectively, which is the highest titer reported to date. Therefore, the method described herein for efficient production of orientin and vitexin by modulating catalytic efficiencies of enzymes can be widely used for the C-glycosylation of flavonoids.


Asunto(s)
Apigenina/biosíntesis , Flavonoides/biosíntesis , Glucósidos/biosíntesis , Glucosiltransferasas/metabolismo , Glicosiltransferasas/metabolismo , Apigenina/aislamiento & purificación , Biocatálisis , Flavonoides/aislamiento & purificación , Glucósidos/aislamiento & purificación , Ranunculaceae/enzimología , Glycine max/enzimología
10.
Circ Res ; 121(6): 636-649, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28760777

RESUMEN

RATIONALE: The highly conserved NOTCH (neurogenic locus notch homolog protein) signaling pathway functions as a key cell-cell interaction mechanism controlling cell fate and tissue patterning, whereas its dysregulation is implicated in a variety of developmental disorders and cancers. The pivotal role of endothelial NOTCH in regulation of angiogenesis is widely appreciated; however, little is known about what controls its signal transduction. Our previous study indicated the potential role of post-translational SUMO (small ubiquitin-like modifier) modification (SUMOylation) in vascular disorders. OBJECTIVE: The aim of this study was to investigate the role of SUMOylation in endothelial NOTCH signaling and angiogenesis. METHODS AND RESULTS: Endothelial SENP1 (sentrin-specific protease 1) deletion, in newly generated endothelial SENP1 (the major protease of the SUMO system)-deficient mice, significantly delayed retinal vascularization by maintaining prolonged NOTCH1 signaling, as confirmed in cultured endothelial cells. An in vitro SUMOylation assay and immunoprecipitation revealed that when SENP1 associated with N1ICD (NOTCH1 intracellular domain), it functions as a deSUMOylase of N1ICD SUMOylation on conserved lysines. Immunoblot and immunoprecipitation analyses and dual-luciferase assays of natural and SUMO-conjugated/nonconjugated NOTCH1 forms demonstrated that SUMO conjugation facilitated NOTCH1 cleavage. This released N1ICD from the membrane and stabilized it for translocation to the nucleus where it functions as a cotranscriptional factor. Functionally, SENP1-mediated NOTCH1 deSUMOylation was required for NOTCH signal activation in response to DLL4 (Delta-like 4) stimulation. This in turn suppressed VEGF (vascular endothelial growth factor) receptor signaling and angiogenesis, as evidenced by immunoblotted signaling molecules and in vitro angiogenesis assays. CONCLUSIONS: These results establish reversible NOTCH1 SUMOylation as a regulatory mechanism in coordinating endothelial angiogenic signaling; SENP1 acts as a critical intrinsic mediator of this process. These findings may apply to NOTCH-regulated biological events in nonvascular tissues and provide a novel therapeutic strategy for vascular diseases and tumors.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Fisiológica , Receptores Notch/metabolismo , Sumoilación , Proteínas Adaptadoras Transductoras de Señales , Animales , Sitios de Unión , Proteínas de Unión al Calcio , Células Cultivadas , Cisteína Endopeptidasas , Endopeptidasas/genética , Endopeptidasas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Unión Proteica , Receptores Notch/química , Receptores de Factores de Crecimiento Endotelial Vascular/genética , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Transducción de Señal
11.
Anim Biotechnol ; 30(4): 332-341, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30394177

RESUMEN

GDF9 (growth differentiation factor 9) belongs to the transforming growth factor-ß (TGF-ß) superfamily and plays an irreplaceable role in female fertility. To reveal its genetic effects on productivity performance in chickens, 373 Jinghai Yellow chickens were chosen randomly to detect SNPs in GDF9 by PCR-SSCP and DNA sequencing methods. Eventually, four SNPs (g.2053G > A, g.2275T > C, g.2338C > T, g.2420T > C) in total had been detected. Amongst them, g.2420T > C was first found significantly associated with reproduction trait in chickens and heterozygous type C2T2 had higher average egg weight at 300 days of age (AEWD300) than T2T2 (p < 0.01). Least squares analysis showed that age at first laying (AFE) of H1 and H1H1 chickens were significantly earlier than that of H7 and H7H7 ones, respectively (p < 0.05). H1H5 hens showed higher AEWD300 than H4H7 ones (p < 0.05). For total egg number at 300 days of age (END300), mean of H5H5 was significantly higher than that of H4H4 (p < 0.05). Hence, the study suggested that hybrid vigor at g.2420T > C could be utilized in practice. H1H1, H1H5 and H5H5 could be the dominant diplotypes for chicken breeding. The study may contribute to the breeding progress of productive chickens and supply reference for oviparous animal production practice.


Asunto(s)
Proteínas Aviares/genética , Pollos/genética , Factor 9 de Diferenciación de Crecimiento/genética , Reproducción/genética , Animales , Femenino , Frecuencia de los Genes , Estudios de Asociación Genética , Ligamiento Genético , Haplotipos , Vigor Híbrido , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
12.
Cytotherapy ; 20(10): 1247-1258, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30174233

RESUMEN

BACKGROUND AIMS: The chronic inflammation of autoimmune diseases develops repetitive localized destruction or systemic disorders, represented by Hashimoto's thyroiditis (HT) and Systemic lupus erythematosus (SLE) respectively. Currently, there are no efficient ways to treat these autoimmune diseases. Therefore, it is critically important to explore new therapeutic strategies. The aim of this study was to investigate the therapeutic efficacy of human amniotic epithelial cells (hAECs) in murine models of HT and SLE. METHODS: Experimental autoimmune thyroiditis (EAT) was induced in female CBA/J mice by immunization with porcine thyroglobulin (pTg). hAECs were intravenously administered at different time points during the disease course. MRL-Faslpr mice, a strain with spontaneously occurring SLE, were intravenously administered hAECs when their sera were positive for both anti-nuclear antibodies (ANAs) and anti-double-stranded DNA (anti-dsDNA) antibodies. Two weeks after the last cell transplantation, blood and tissue samples were collected for histological examination and immune system analysis. RESULTS: hAECs prevented lymphocytes infiltration into the thyroid and improved the damage of thyroid follicular in EAT mice. Correspondingly, hAECs administration reduced anti-thyroglobulin antibodies (TGAb), anti-thyroid peroxidase antibodies (TPOAb) and thyroid stimulating hormone (TSH) levels. SLE mice injected with hAECs appeared negative for ANAs and anti-dsDNA antibodies and showed reduced immunoglobulin profiles. Mechanically, hAECs modulated the immune cells balance in EAT and SLE mice, by downregulating the ratios of Th17/Treg cells in both EAT and SLE mice and upregulating the proportion of B10 cells in EAT mice. This was confirmed by in vitro assay, in which hAECs inhibited the activation of EAT mice-derived splenocytes. Moreover, hAECs improved the cytokine environment in both EAT and SLE mice, by suppressing the levels of IL-17A and IFN-γ and enhancing TGF-ß. CONCLUSION: These results demonstrated the immunoregulatory effect of hAECs for inflammation inhibition and injury recovery in HT and SLE murine models. The current study may provide a novel therapeutic strategy for these autoimmune diseases in clinic.


Asunto(s)
Amnios/citología , Células Epiteliales/trasplante , Enfermedad de Hashimoto/terapia , Lupus Eritematoso Sistémico/terapia , Animales , Autoanticuerpos/metabolismo , Citocinas/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/inmunología , Femenino , Enfermedad de Hashimoto/inmunología , Humanos , Lupus Eritematoso Sistémico/inmunología , Ratones Endogámicos CBA , Linfocitos T Reguladores/inmunología , Tiroiditis Autoinmune/etiología , Tiroiditis Autoinmune/terapia , Tirotropina/sangre
13.
Acta Pharmacol Sin ; 39(8): 1305-1316, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29565036

RESUMEN

Human amniotic epithelial cells (hAECs), derived from the innermost layer of the term placenta closest to the fetus, have been shown to be potential seed cells for allogeneic cell therapy. Previous studies have shown a certain therapeutic effect of hAECs. However, no appropriate isolation and culture system for hAECs has been developed for clinical applications. In the present study, we established a serum-free protocol for hAEC isolation and cultivation, in which better cell growth was observed compared with that in a traditional culture system with serum. In addition to specific expression of cell surface markers (CD29, CD166 and CD90), characterization of the biological features of hAECs revealed expression of the pluripotent markers SSEA4, OCT4 and NANOG, which was greater than that in human mesenchymal stem cells, whereas very low levels of HLA-DR and HLA-DQ were detected, suggesting the weak immunogenicity of hAECs. Intriguingly, CD90+ hAECs were identified as a unique population with a powerful immunoregulatory capacity. In a systemic safety evaluation, intravenous administration of hAEC did not result in hemolytic, allergy, toxicity issues or, more importantly, tumorigenicity. Finally, the therapeutic effect of hAECs was demonstrated in mice with radiation-induced damage. The results revealed a novel function of hAECs in systemic injury recovery. Therefore, the current study provides an applicable and safe strategy for hAEC cell therapy administration in the clinical setting.


Asunto(s)
Amnios/citología , Células Epiteliales , Trasplante de Células Madre , Animales , Pruebas de Carcinogenicidad , Células Cultivadas , Medio de Cultivo Libre de Suero , Citocinas/metabolismo , Células Epiteliales/fisiología , Células Epiteliales/trasplante , Femenino , Cobayas , Humanos , Masculino , Ratones Endogámicos ICR , Ratones Endogámicos NOD , Ratones SCID , Embarazo , Cultivo Primario de Células , Traumatismos Experimentales por Radiación/terapia , Ratas Sprague-Dawley , Antígenos Thy-1/metabolismo
14.
Proc Natl Acad Sci U S A ; 112(41): 12812-7, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26417068

RESUMEN

The contribution of endothelial-derived miR-17∼92 to ischemia-induced arteriogenesis has not been investigated in an in vivo model. In the present study, we demonstrate a critical role for the endothelial-derived miR-17∼92 cluster in shaping physiological and ischemia-triggered arteriogenesis. Endothelial-specific deletion of miR-17∼92 results in an increase in collateral density limbs and hearts and in ischemic limbs compared with control mice, and consequently improves blood flow recovery. Individual cluster components positively or negatively regulate endothelial cell (EC) functions in vitro, and, remarkably, ECs lacking the cluster spontaneously form cords in a manner rescued by miR-17a, -18a, and -19a. Using both in vitro and in vivo analyses, we identified FZD4 and LRP6 as targets of miR-19a/b. Both of these targets were up-regulated in 17∼92 KO ECs compared with control ECs, and both were shown to be targeted by miR-19 using luciferase assays. We demonstrate that miR-19a negatively regulates FZD4, its coreceptor LRP6, and WNT signaling, and that antagonism of miR-19a/b in aged mice improves blood flow recovery after ischemia and reduces repression of these targets. Collectively, these data provide insights into miRNA regulation of arterialization and highlight the importance of vascular WNT signaling in maintaining arterial blood flow.


Asunto(s)
Receptores Frizzled/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , MicroARNs/metabolismo , Familia de Multigenes/fisiología , Neovascularización Fisiológica/fisiología , Vía de Señalización Wnt/fisiología , Animales , Receptores Frizzled/genética , Isquemia/genética , Isquemia/metabolismo , Isquemia/patología , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Ratones , Ratones Noqueados , MicroARNs/genética
15.
Biochem Biophys Res Commun ; 443(1): 74-9, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24269237

RESUMEN

Dwarf lilyturf tuber is widely used in clinics to prevent cardiovascular diseases. DT-13, the saponin monomer 13 of dwarf lilyturf tuber, shows protective activities in anti-thrombosis, anti-inflammation, and cardioprotective. However, little is known about the cellular function of DT-13 in cardiovascular system. Vascular endothelial cells (EC) are important to maintain the integrity of the vasculature throughout entire body. Dysregulation of EC may lead to pathophysiological processes of numerous cardiovascular diseases. We thus tested the function of DT-13 in EC. In the present study, we are the first to report that DT-13 has anti-apoptosis activity on human umbilical vein endothelial cells (HUVEC), potentially through down regulation of cleaved caspase-3 and cleaved PARP expression. DT-13 also increased mitochondrial membrane potential. To explore the potential mechanism, we investigated the effect of DT-13 on Akt and MAPK pathways and found that DT-13 was involved in Akt signaling confirmed by using PI3K/Akt inhibitor LY294002. Thus, DT-13 could improve survival of EC and therefore be a potential clinical use in the treatment of cardiovascular diseases.


Asunto(s)
Apoptosis/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Liriope (Planta)/química , Saponinas/farmacología , Células Cultivadas , Medio de Cultivo Libre de Suero , Células Endoteliales de la Vena Umbilical Humana/enzimología , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
16.
Adv Sci (Weinh) ; 10(33): e2301639, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37870182

RESUMEN

Stem cells play critical roles in cell therapies and tissue engineering for nerve repair. However, achieving effective delivery of high cell density remains a challenge. Here, a novel cell delivery platform termed the hyper expansion scaffold (HES) is developed to enable high cell loading. HES facilitated self-promoted and efficient cell absorption via a dual driving force model. In vitro tests revealed that the HES rapidly expanded 80-fold in size upon absorbing 2.6 million human amniotic epithelial stem cells (hAESCs) within 2 min, representing over a 400% increase in loading capacity versus controls. This enhanced uptake benefited from macroscopic swelling forces as well as microscale capillary action. In spinal cord injury (SCI) rats, HES-hAESCs promoted functional recovery and axonal projection by reducing neuroinflammation and improving the neurotrophic microenvironment surrounding the lesions. In summary, the dual driving forces model provides a new rationale for engineering hydrogel scaffolds to facilitate self-promoted cell absorption. The HES platform demonstrates great potential as a powerful and efficient vehicle for delivering high densities of hAESCs to promote clinical treatment and repair of SCI.


Asunto(s)
Traumatismos de la Médula Espinal , Regeneración de la Medula Espinal , Ratas , Animales , Humanos , Andamios del Tejido , Traumatismos de la Médula Espinal/terapia , Ingeniería de Tejidos , Impresión Tridimensional
17.
Materials (Basel) ; 16(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36614569

RESUMEN

Manufacturing and maintenance procedures in the railway industry regularly implement welding and metal deposition operations to produce joints, coatings and repair structures. During these processes, residual stresses arise through the generation of heat affected zones and plastic deformation. This makes accurate measurements of the internal stresses a critical aspect of manufacturing, monitoring, repair and model validation in the develop new metallic coating and joining technologies. Selection of an appropriate residual stress measurement method has many important factors including component size, resolution and the magnitude and location of internal stresses, often resulting in a combination of techniques required to obtain complete assessment of the stress state. This paper offers a review of residual stress measurement techniques for railway components including rail joints and coatings through comparison of destructive and non-destructive approaches, their measurement capabilities, benefits and limitations. A comprehensive discussion of different applications is provided with a summary of facilities available to both research and industry.

18.
Materials (Basel) ; 15(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36363057

RESUMEN

Tram or light rail systems are heavily relied upon for passenger transit; however, low-carbon steel grades commonly used in special trackwork, such as in switches, are prone to wear, rolling contact fatigue (RCF), and deformation under cyclic wheel-rail contact. To address this, laser cladding can be used to apply a metal coating to protect the underlying substrate and rebuild the worn rail profiles. Laser cladding may also be applied to remove cracking by rebuilding the rail head. The tribological characteristics of light rail components after laser cladding with Stellite 6 and a newly developed martensitic stainless steel were investigated, using roller-on-disc wear testing. Analysis of the microstructure, mechanical properties, and wear performance was undertaken to develop a comprehensive understanding of the influence of the laser cladding type on the wear and surface fatigue performance. Both cladding alloys significantly improved the tribological performance. These findings were compared to those for a laser cladded hypereutectoid rail type (reported in our previous study). It was found that laser cladding with a suitable alloy was an effective technique for improving the tribological properties, increasing the wear resistance, and increasing the retardation of cracking on both substrates. These findings suggest laser cladding may be used to repair light rail components, and this technique can be optimized to suit different rail grades. This makes laser cladding a flexible and versatile maintenance strategy, in both coating and repair applications, to prolong the operational lifetime of critical components for the railway industry.

19.
Materials (Basel) ; 15(15)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35955387

RESUMEN

The development of a laser cladding repair strategy is critical for the continued growth of heavy-haul railway networks. Premium hypereutectoid rails have undergone laser cladding using a new martensitic stainless-steel alloy, 415SS, developed for high carbon rails after standard cladding metals were found to be incompatible. Non-destructive neutron diffraction techniques were used to measure the residual stress in different layers generated across a dissimilar metal joint during laser cladding. The internal stress distribution across the cladding, heat-affected zone (HAZ), and substrate was measured in the untempered rail, after 350 °C and 540 °C heat treatment procedures and two surface grinding operations. The martensitic 415SS depositions produce compressive stress in the cladding, regardless of tempering procedures, which may inhibit fatigue crack propagation whilst grinding operations locally relive surface stress. Balancing tensile stresses were recorded below the fusion boundary in the HAZ due to thermal gradients altering the microstructure. The combination of 540 °C tempering and 0.5 mm surface layer removal produced a desirable combination of compression in the cladding deposition with significantly reduced tensile stresses in the HAZ. A comparison with the current literature shows that this alloy achieves a unique combination of desirable hardness, low tensile stress, and compression in the cladding layer. Data obtained during strain scanning has been used to determine the location of microstructural changes at the fusion boundary and HAZ through correlation of the stress, strain, full width at half maximum (FWHM), and intensity profiles. Therefore, neutron diffraction can be used for both the accurate measurement of internal residual stress and to obtain microstructural information of a metallurgical join non-destructively.

20.
Bioengineering (Basel) ; 9(10)2022 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36290504

RESUMEN

Spinal cord injury (SCI) results in devastating consequences for the motor and sensory function of patients due to neuronal loss and disrupted neural circuits, confronting poor prognosis and lack of effective therapies. A new therapeutic strategy is urgently required. Here, human amniotic epithelial cells (hAEC), featured with immunocompatibility, non-tumorgenicity and no ethical issues, were induced into neural-like cells by a compound cocktail, as evidenced with morphological change and the expression of neural cell markers. Interestingly, the hAEC-neural-like cells maintain the characteristic of low immunogenicity as hAEC. Aiming at SCI treatment in vivo, we constructed a 3D-printed GelMA hydrogel biomimetic spinal cord scaffold with micro-channels, in which hAEC-neural-like cells were well-induced and grown. In a rat full transection SCI model, hAEC-neural-like cell scaffolds that were implanted in the lesion demonstrated significant therapeutic effects; the neural circuit and hindlimb locomotion were partly recovered compared to little affection in the SCI rats receiving an empty scaffold or a sham implantation operation. Thus, the establishment of hAEC-neural-like cell biomimetic scaffolds may provide a safe and effective treatment strategy for SCI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA