Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Phys Chem Chem Phys ; 26(8): 6862-6871, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38329283

RESUMEN

Density functional theory studies on the geometric and electronic structures, UV-vis absorption spectra, and second-order nonlinear optical (NLO) properties of four-coordinate Pt(II) bis-acetylide complexes, cis-[Pt(CNtBu)(ADC)(CCR)2] , have been employed. The effects of ligand variation and the single electron redox process on the structures and NLO response of complexes have also been investigated. It shows that the variations of the ligand and electron have little effect on the geometries of the complexes, but there is a significant effect on their electronic structures and NLO responses. The introduction of a single -NO2 group in acetylide ligands increases the first hyperpolarizability of complex 12 times, while one electron lost in five complexes enhances the first hyperpolarizability 496 times at the most. Both methods are considered effective ways for improving the NLO response of Pt(II) bis-acetylide complexes. Based on the analysis of the electronic and optical properties of fifteen studied complexes, the increase of NLO response is mainly ascribed to strong oscillator strengths, lower electron transition energy, and well-directed effective charge transfer. This work reveals some underlying relationships between the NLO responses and electronic structures of complexes, which is helpful for the design and synthesis of high-performance NLO materials of Pt(II) bis-acetylide complexes.

2.
Phys Chem Chem Phys ; 24(30): 18217-18226, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35867024

RESUMEN

It is important to search for efficient nonlinear optical (NLO) materials due to their potential applications in electro-optic devices. Theoretical investigations into the second-order NLO responses of ten novel Ru(II) polypyridyl complexes based on [Ru(phen)2(bipy)]2+ and [Ru(bphen)2(bipy)]2+ have been performed using density functional theory. The effects on the second-order NLO response of introducing a substituent to the bipy group and of varying the ligand from phen to bphen are studied. The introduction of an electron-withdrawing/donating group improves the static first hyperpolarizability (ßtot) for [Ru(phen)2(bipy)]2+ derivatives, where the introduction of a strong electron-donating group, vinyl dimethylamine, increases the ßtot value from 10 a.u. for an unsubstituted complex to 16 425 a.u. However, substituting the phen ligand for a bphen group has only a slight effect on the ßtot values. Research into the electronic structures, UV-vis absorption spectra, and charge transfer properties was also carried out to further understand the second-order NLO properties of the ten complexes. The frontier orbital energy gap, electron density distribution, and charge-transfer direction and quantity are crucial elements impacting the second-order NLO responses of the complexes. Varying the electronic properties is considered to be an effective method for tuning the second-order NLO responses of materials. We hope our work will provide some helpful information for designing and synthesizing cost-effective and high-performance NLO materials.

3.
J Phys Chem A ; 126(41): 7432-7441, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36218337

RESUMEN

Constructing charge transfer (CT) systems and packing arrangement are common and effective methods to control the efficiency of nonlinear optical (NLO) materials. Apart from the traditional through-bond CT (TBCT) systems, through-space CT (TSCT) also leads to distinctive optical and electronic properties. Meanwhile, corresponding theoretical investigations of the aggregation effect are highly desired. In this work, some TSCT and model compounds incorporating acenaphthene as a scaffold and triphenylamine (TPA) as the donor are theoretically performed to systematically reveal the effect of both solvent and solid environments on their static first hyperpolarizabilities (ßtot) by using the polarizable continuum model (PCM) and the combined quantum mechanics and molecular mechanics (QM/MM) method. Results indicate that the dichloromethane solvent effect within the PCM approach causes an almost 2 times increase of the ßtot values. Besides, the different packing modes and intermolecular interactions have remarkable influence on the second-order NLO properties. For the case of TPA-ace-CN in the crystal state, the parallel arrangement will lead to large NLO responses (4.9 × 10-30 esu) compared to the correspondingly isolated molecule (3.4 × 10-30 esu). However, for the TPA-ace-TRZ compound with the TSCT architecture, selection of the molecular arrangement may make the aggregate ineffective due to the offset of the through-space dipole and charge transfer between D-A groups, which lead to the ßtot values decreasing from 15.2 × 10-30 to 7.7 × 10-30 esu. We believe that our calculation will serve as a guide for the exploration of more efficient NLO materials wherein the molecules are oriented in their most favorable arrangements.

4.
Phys Chem Chem Phys ; 23(30): 15881-15898, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34296718

RESUMEN

Organic molecules consisting of electron donor (D) and electron acceptor (A) subunits linked by π-conjugated bridges are promising building blocks for thermally activated delayed fluorescence (TADF) and non-linear optics (NLO) materials due to their intramolecular charge transfer (CT) processes in response to external stimuli. According to the electron interaction pattern, the CT process in D-π-A architectures can be divided into two categories, through-bond/-space charge transfer (TB/TSCT). To date, research into the TADF properties of TSCT characteristic molecules has since seen significant growth. In fact, TSCT characteristic materials show great advantages in such NLO responses. In this perspective, we first briefly introduced the basic principles of NLO and TADF effects. Successively, we discuss the influence of TBCT and TSCT patterns on NLO and TADF properties, especially for TSCT characteristic. In the final part, we address the diversity and potential advantages of TSCT characteristic molecules as high-performance NLO materials. With these, it is expected that the greater structural flexibility of spatial conjugation can bring more functionality to NLO materials in the future.

5.
Phys Chem Chem Phys ; 19(3): 2557-2566, 2017 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-28059404

RESUMEN

Confining excess electrons in a specific space is an effective strategy to design nonlinear optical (NLO) molecules. The complexants with excess electrons are usually organic compounds, but these compounds are thermally unstable and thus hardly meet the processing requirements of NLO materials. To obtain better thermostability and NLO response molecules, in this work, inorganic compounds of B20H26 isomers containing two cavities were proposed. With the two included cavities, B20H26 can be doped by one or two Li atoms to form electrides of Li@B20H26 and Li2@B20H26. These electrides show larger NLO responses, with respect to the corresponding undoped complexant of B20H26. Particularly, Li2@B20H26 has the largest ß0 value of 108 846 a.u. (MP2/6-31+G(d) level) that is 850 times as large as that of corresponding B20H26. Moreover, the change of ß0 values with excess electron number is remarkable for two of the isomers, and differences between the ß0 values among those isomers are also significant owing to various B-B connection sites between the two cavities. Therefore, the present inorganic electrides have not only better performance due to the magnitude of their ß0 values but also better behavior on the molecular-level modulation of NLO.

6.
Phys Chem Chem Phys ; 19(3): 2322-2331, 2017 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-28054686

RESUMEN

To reveal a new structure-property relationship regarding the nonlinear optical (NLO) properties of fullerenes that are associated with gamma (γ) density, fullerenes I (C40, C50, C60 and C70), whose heights range from 4.83 to 7.96 Å, and II (C24, C36, C48 and C72), whose widths range from 4.45 to 8.22 Å, have been the research objects. Calculation of their geometric and electronic structures, absorption spectra, and the second hyperpolarizability (γ) and the γ density analysis have been performed. It is found that the electronic spatial extent and the polarizability (α) value increase linearly as the fullerenes increase by every 12 carbon atoms. Similarly, the γ values are also proportional to the fullerene size. It is worth noting that the relative magnitude of γxxxx and γzzzz was exactly consistent with that of the width and height of fullerenes. The analysis of γ density provides the essential reason for this result, that is, the magnitude of the contribution to γ values associated with γ densities is proportional to the density amplitudes multiplied by the distance between them. Larger fullerenes possess larger density amplitudes and longer distances, resulting in larger γ values with respect to smaller fullerenes. This work presents a new structure-property interplay between the width and height of the fullerenes and their second hyperpolarizability γ. Moreover, the γ density analysis provides a new insight to explore the nature of the relationship between the structure and the NLO properties.

7.
J Phys Chem A ; 120(46): 9330-9340, 2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27934245

RESUMEN

Zwitterionic complexes have been the subject of great interest in the past several decades due to their multifunctional application in supramolecular chemistry. Herein, a series of internally stable charge-compensated carboranylated square-planar Pt(II) zwitterionic complexes have been explored by density functional theory aim to assessing their structures, the first hyperpolarizabilities, first hyperpolarizability densities, and electronic absorption spectra. It is found that the first hyperpolarizabilities of two-dimensional (2D) structure complexes are much larger with respect to the one-dimensional complex. It is ascribed to the lower transition energy and more obvious charge transfer, which can be further illustrated by their large amplitude and separate distribution of first hyperpolarizability density. In addition, the first hyperpolarizabilities of 2D complexes can be further significantly modified by introducing electron-donating/withdrawing groups on the carborane cage. As a consequence, we believe that these 2D zwitterionic complexes can behave as novel second-order nonlinear optical chromophore with a promising future.

8.
J Chem Phys ; 145(24): 244705, 2016 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-28049323

RESUMEN

A combined molecular dynamics (MD) and quantum chemical (QC) simulation method is utilized to investigate charge generation mechanism at TTF/TCNQ (tetrathiafulvalene/tetracyanoquinodimethane) heterojunction, which is a controversial donor/acceptor (D/A) interface for organic photovoltaic (OPV) devices. The TTF/TCNQ complexes extracted from MD simulation are classified into parallel and herringbone packings. And then, the amounts of charge transferred from ground states to different excited states and the corresponding energies of charge transfer (CT) state are compared and analyzed using QC simulation. Moreover, the electron transfer/recombination rates for these interfacial configurations are also studied. From these data, we have elucidated the underlying reason why TTF/TCNQ heterojunction is inadaptable to OPV application. One main reason is that large |ΔGCT| (the absolute value of Gibbs free energy change of CT) forms a large energy barrier, limiting exciton dissociation at the TTF/TCNQ heterojunction, and small |ΔGCR| (the absolute value of Gibbs free energy change of charge recombination) performs the easy recombination to the ground state.

9.
J Am Chem Soc ; 137(38): 12406-14, 2015 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-26335760

RESUMEN

A facile synthesis of cyclic aminodiborane (NH2B2H5, ADB) from ammonia borane (NH3·BH3, AB) and THF·BH3 has made it possible to determine its important characteristics. Ammonia diborane (NH3BH2(µ-H)BH3, AaDB) and aminoborane (NH2BH2, AoB) were identified as key intermediates in the formation of ADB. Elimination of molecular hydrogen occurred from an ion pair, [H2B(NH3) (THF)](+)[BH4](-). Protic-hydridic hydrogen scrambling was proved on the basis of analysis of the molecular hydrogen products, ADB and other reagents through (2)H NMR and MS, and it was proposed that the scrambling occurred as the ion pair reversibly formed a BH5-like intermediate, [(THF)BH2NH2](η(2)-H2)BH3. Loss of molecular hydrogen from the ion pair led to the formation of AoB, most of which was trapped by BH3 to form ADB with a small amount oligomerizing to (NH2BH2)n. Theoretical calculations showed the thermodynamic feasibility of the proposed intermediates and the activation processes. The structure of the ADB·THF complex was found from X-ray single crystal analysis to be a three-dimensional array of zigzag chains of ADB and THF, maintained by hydrogen and dihydrogen bonding. Room temperature exchange of terminal and bridge hydrogens in ADB was observed in THF solution, while such exchange was not observed in diethyl ether or toluene. Both experimental and theoretical results confirm that the B-H-B bridge in ADB is stronger than that in diborane (B2H6, DB). The B-H-B bridge is opened when ADB and NaH react to form sodium aminodiboronate, Na[NH2(BH3)2]. The structure of the sodium salt as its 18-crown-6 ether adduct was determined by X-ray single crystal analysis.

10.
Phys Chem Chem Phys ; 16(10): 4900-10, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24472893

RESUMEN

The studies of geometrical structures, thermal stabilities, redox properties, nonlinear responses and optoelectronic properties have been carried out on a series of novel ferrocenyl (Fc) chromophores with the view of assessing their switchable and tailorable second order nonlinear optics (NLO). The use of a constant Fc donor and a 4,4'-bipyridinium acceptor and varied conjugated bridges makes it possible to systematically determine the contribution of organic connectors to chromophore nonlinear optical activities. The structures reveal that both the reduction reactions and organic connectors have a significant influence on 4,4'-bipyridinium. The potential energy surface maps along with plots of reduced density gradient mirror the thermal stabilities of the Fc-based chromophores. The first and second reductions take place preferentially at the 4,4'-bipyridinium moieties. Significantly, the reduction processes result in the molecular switches with large NLO contrast varying from zero or very small to a large value. Moreover, time-dependent density functional theory results indicate that the absorption peaks are mainly attributed to Fc to 4,4'-bipyridinium charge transfer and the mixture of intramolecular charge transfer within the two respective 4,4'-bipyridinium moieties coupled with interlayer charge transfer between the two 4,4'-bipyridinium moieties. This provides us with comprehensive information on the effect of organic connectors on the NLO properties.

11.
J Phys Chem B ; 128(25): 6167-6177, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38877610

RESUMEN

High-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) are gaining more and more attention due to their higher efficiency than low-temperature ones. Polybenzimidazole (PBI) membranes are the most popular membranes used in HT-PEMFCs. However, their chemical stability and chemical degradation mechanisms, which directly affect the lifetime of fuel cells, have been hardly reported. We applied the density functional theory and used ABPBI as an example membrane to investigate the chemical degradation mechanisms of PBI membranes. The possible degradation mechanisms that occurred on eight sites have been proposed, where sites 2 and 3 located on the phenyl ring are determined as two weak sites toward OH radical and oxygen molecule attack. When the terminal is the H atom at site 7, it is also weak under OH radical attack. Regarding these, the substituent effect on the chemical stability of polymers has been studied. By introducing four -C2F5 or -CN groups, the barrier heights of the corresponding degradation reactions are increased; thus, the chemical stabilities of related membranes are improved. The selection of terminal atoms was also explored for alleviating the chemical degradation of the membrane. The investigated proton transfer properties of nine model compounds revealed that introducing four -C2F5 or -CN groups improves the proton dissociation properties occurring at the cathode. The increase of phosphoric acid concentration is helpful for the proton transfer at both the membrane and the cathode. This work may hopefully help the design and synthesis of HT-PEMFCs with good stability and high efficiency.

12.
J Phys Chem A ; 117(47): 12497-510, 2013 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-24180267

RESUMEN

The second-order nonlinear optical (NLO) properties of a series of Pt(II) dithienylethene (DTE) complexes possessing the reversible photochromic behavior have been investigated by density functional theory (DFT) combined with the analytic derivatives method. The results show that the calculated static first hyperpolarizabilities (ßtot) of the open-ring and closed-ring systems significantly increase in the range of 2.1-4.5 times through strengthening of the electron-withdrawing ability of the substituent R (R = H, CF3, NO2) and an increase of the number of thiophene rings. Moreover, there is a large enhancement of the ßtot values from the open-ring systems to the corresponding closed-ring systems. This efficient enhancement is attributed to the better delocalization of the π-electron system, the more obvious degree of charge transfer, and the larger f(os)/E(gm)(3) (f(os) is the oscillator strength, and E(gm) is the transition energy between the ground and the excited states) values in the closed forms according to the bond length alternation (BLA) and time-dependent density functional theory (TDDFT) calculations. In addition, the dispersion has less influence on the frequency-dependent first hyperpolarizabilities (ßtot(ω)) of the studied systems at the low-frequency area ω (0.000-0.040 au). Our present work would be beneficial for further theoretical and experimental studies on large second-order NLO responses of metal complexes.


Asunto(s)
Compuestos Organoplatinos/química , Tiofenos/química , Estructura Molecular , Fenómenos Ópticos , Procesos Fotoquímicos , Teoría Cuántica
13.
J Chem Phys ; 139(12): 124314, 2013 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-24089774

RESUMEN

An increasing number of chemists have focused on the investigations of two-electron/multicenter bond (2e/mc) that was first introduced to describe the structure of radical dimers. In this work, the dimerization of two isoelectronic radicals, triazaphenalenyl (TAP) and hexaazaphenalenyl (HAP) has been investigated in theory. Results show TAP2 is a stable dimer with stronger 2e/12c bond and larger interaction energy, while HAP2 is a less stable dimer with larger diradical character. Interestingly, the ultraviolet-visible absorption spectra suggest that the dimerization induces a longer wavelength absorption in visible area, which is dependent on the strength of dimerization. Significantly, the amplitude of second hyperpolarizability (γ(yyyy)) of HAP2 is 1.36 × 10(6) a.u. that is larger than 7.79 × 10(4) a.u. of TAP2 because of the larger diradical character of HAP2. Therefore, the results indicate that the strength of radical dimerization can be effectively detected by comparing the magnitude of third order non-linear optical response, which is beneficial for further theoretical and experimental studies on the properties of complexes formed by radical dimerization.

14.
J Comput Chem ; 33(2): 211-9, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22042719

RESUMEN

The second-order nonlinear optical (NLO) properties of the Cp*Co(C(2)H(5))(2)C(2)B(4)H(3)-expanded (metallo)porphyrins (Cp* = C(5)Me(5)) have been investigated by using ab inito RHF and density functional theory (DFT) methods. The investigation shows that the compound with expand porphyrin possesses remarkable large molecular hyperpolarizability ß(tot) value, ~414.1 × 10(-30) esu (at LC-ωPBE level), and might be an excellent second-order NLO material. From the character of charge transfer (CT) transition, it indicates that the -Cp*Co(C(2)H(5))(2)C(2)B(4)H(3) acts as an electron donor in this kind of systems. As a result of the redox behavior on expanded (metallo)porphyrin, the redox switching character of the NLO responses for the systems 2a-4a has also been studied. The results show that the ß(tot) values of reduced forms are larger than that of neutral ones. Furthermore, the time-dependent DFT calculation illustrates that reduced forms have a significant difference on the CT patterns versus neutral ones. The present investigation provides insight into the comparison with DFT results on estimating first hyperpolarizability and the NLO properties of the series of push-pull compounds.


Asunto(s)
Cobalto/química , Metaloporfirinas/química , Modelos Químicos , Estructura Molecular , Oxidación-Reducción , Teoría Cuántica
15.
Chemistry ; 18(36): 11350-5, 2012 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-22829460

RESUMEN

The unusual properties of species with excess electrons have attracted a lot of interest in recent years due to their wide applications in many promising fields. In this work, we find that the excess electron could be effectively bound by the B atoms of boron nitride nanotube (BNNT), which is inverted pyramidally distributed from B-rich edge to N-rich edge. Further, Li@B-BNNT and Li@N-BNNT are designed by doping the Li atom to the two edges of BNNT, respectively. Because of the interaction between the Li atom and BNNT, the 2s valence electron of Li becomes a loosely bound excess electron. Interestingly, the distribution of the excess electron in Li@N-BNNT is more diffuse and pyramidal from B-rich edge to N-rich edge, which is fascinating compared with Li@B-BNNT. Correspondingly, the transition energy of Li@N-BNNT is 0.99 eV, which is obviously smaller than 2.65 eV of Li@B-BNNT. As a result, the first hyperpolarizability (3.40×10(4) a.u.) of Li@N-BNNT is dramatically larger (25 times) than 1.35×10(3) a.u. of Li@B-BNNT. Significantly, we find that the pyramidal distribution of the excess electron is the key factor to determine the first hyperpolarizability, which reveals useful information for scientists to develop new electro-optic applications of BNNTs.

16.
Chemphyschem ; 13(9): 2349-53, 2012 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-22615209

RESUMEN

Much effort has been devoted to investigating the unusual properties of the π electrons in Möbius cyclacenes, which are localized in a special region. However, the localized π electrons are a disadvantage for applications in optoelectronics, because intramolecular charge transfer is limited. This raises the question of how the intramolecular charge transfer of a Möbius cyclacene with clearly localized π electrons can be enhanced. To this end, [8]Möbius cyclacene ([8]MC) is used as a conjugated bridge in a donor-π-conjugated bridge-acceptor (D-π-A) system, and NH(2)-6-[8]MC-10-NO(2) exhibits a fascinating spiral charge-transfer transition character that results in a significant difference in dipole moments Δµ between the ground state and the crucial excited state. The Δµ value of 6.832 D for NH(2)-6-[8]MC-10-NO(2) is clearly larger than that of 0.209 D for [8]MC. Correspondingly, the first hyperpolarizability of NH(2)-6-[8]MC-10-NO(2) of 12,467 a.u. is dramatically larger than that of 261 a.u. for [8]MC. Thus, constructing a D-π-A framework is an effective strategy to induce greater spiral intramolecular charge transfer in MC although the π electrons are localized in a special region. This new insight into the properties of π electrons in Möbius cyclacenes may provide valuable information for their applications in optoelectronics.

17.
Phys Chem Chem Phys ; 14(16): 5605-12, 2012 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-22430546

RESUMEN

We report a theoretical study based on density functional theory (DFT) on the geometric and electronic structure, linear optical and second-order nonlinear optical properties of a series of new inorganic-organic hybrid hexamolybdate-organoimido-(car)boranes. By the incorporation of borane/carborane at the end of the phenyl ring of the organoimido segment, the studied systems show excellent nonlinear optical (NLO) response than the organoimido-substituted hexamolybdate. The computed static first hyperpolarizability ß(vec) value of [Mo(6)O(18)(NC(8)H(8))(B(12)H(11))](4-) (II) is largest, -167.2 × 10(-30) esu, and a higher ß(vec) value of [Mo(6)O(18)(NC(8)H(8))(C(2)B(10)H(11))](2-) (III-2p) is 58.6 × 10(-30) esu. Moreover, the time-dependent (TD)DFT calculation illustrates that the maximum absorption, which is helpful for the large NLO responses, is mainly assigned to the charge transfer (CT) from (car)borane and organoimido segment to the hexamolybdate cluster. The density of density (DOS) calculations further illustrate the excitation from valence orbitals of boron atoms to that of Mo and O atoms in hexamolybdate can be responsible for larger NLO responses. The linear and nonlinear optical properties of species III both vary with the position of the vertex on the carborane. Furthermore, the order of the ß(vec) values is consistent with the bathochromic shift of the maximum absorption for our studied systems, and the studied systems show a wider transparency range extending into the entire visible and infrared (IR) region.

18.
Phys Chem Chem Phys ; 14(47): 16476-85, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23131708

RESUMEN

Stimulated by the preparation and characterization of the isolated pentagon rule (IPR) violating chlorofullerene: C(60)Cl(8) (Nat. Mater. 2008, 7, 790-794), we have performed a systematic investigation on the structural stabilities, electronic and optical properties of the IPR-violating C(60)X(8) (X = H, F, and Cl) fullerene compounds via density functional theory. The large energy gaps between the highest occupied and the lowest unoccupied molecular orbitals provide a clear indication of high chemical stabilities of C(60)X(8) derivatives, and moreover, the C(60)X(8) molecules present great aromatic character with the negative nucleus independent chemical shift values. In the addition reactions of C(60) (C(2v)) + 4X(2) → C(60)X(8), a series of exothermic processes are involved, with high reaction energies ranging from -71.97 to -233.16 kcal mol(-1). An investigation on the electronic property shows that C(60)F(8) and C(60)Cl(8) could be excellent electron acceptors as a consequence of large vertical electron affinities. The density of state analysis suggests that the frontier molecular orbitals of C(60)X(8) are mainly from the carbon orbitals of two separate annulene subunits, and the influence from X atoms is secondary. In addition, the ultraviolet-visible spectra and second-order hyperpolarizabilities of C(60)X(8) are calculated by means of time-dependent density functional theory and a finite field approach, respectively. Both the average static linear polarizability <α> and second-order hyperpolarizability <γ> of C(60)X(8) increase greatly compared to those of C(60).

19.
J Phys Chem A ; 116(43): 10496-506, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23050877

RESUMEN

The static second-order nonlinear optical (NLO) properties on a series of the two-dimensional (2D) pincer Ru(II) complexes with the substituted Tpy and H(2)SCS tridentate ligands (Tpy = 2,2':6',2″-terpyridyl and H(2)SCS = 2,6-bis(benzylaminothiocarbonyl)phenyl) have been investigated by density functional theory (DFT). Introducing different donor/acceptor substituents to two ligands has an influence on the static first hyperpolarizabilities (ß(tot)) of the 2D systems. Compared to the reference system 1 [Ru(H(2)SCS)(Tpy)](+), introducing the branches with strong electron acceptor group (p-NO(2)-phenylethynyl) to the Tpy ligand or the branches with strong electron donor group (p-NH(2)-phenylethynyl) to the H(2)SCS ligand can effectively improve the ß(tot) values. Time-dependent DFT (TDDFT) calculations indicate that the enhanced ß(tot) values of the substituted systems are dominated by the intraligand charge transfer (ILCT), metal-to-ligand charge transfer (MLCT) and ligand-to-metal charge transfer (LMCT) transitions. Furthermore, the proton abstraction plays an important role in tuning the second-order NLO response. Particularly, for system 5 bearing the branches with NO(2) groups on H(2)SCS ligand, there is a dramatic enhancement in the ß(tot) values for its deprotonated forms. The ß(tot) values of the monodeprotonated system 5-H and the dideprotonated system 5-2H (58.712 × 10(-30) and 761.803 × 10(-30) esu) are about 7.58 times and 36.4 times larger than their diprotonated system 5, respectively. The second-order NLO responses based on substituent effect and proton abstraction switch are two-dimensional in characteristic with the large off-diagonal tensor values.

20.
ACS Omega ; 7(45): 41586-41593, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36406514

RESUMEN

A meticulous understanding of the electronic structure of catalysts may provide new insight into catalytic performances. Here, we present a d-d interaction model to systematically study the electronic interaction in Cu-based single-atom alloys. We refine three types of electronic interactions according to the position of the antibonding state relative to the Fermi level. Moreover, we also find a special phenomenon in Mn-doped single-atom alloys in which no obvious electronic interaction is found, and the doped Mn metal seems to be a free atom. Then, taking Hf/Mn-doped single-atom alloys as an example, we discuss the electronic structure based on the density of states, charge transfer, crystal orbital Hamilton population, and wavefunctions. To support the proposed model and help analyze the data, we perform an energetic analysis of water dissociation in the water-gas shift reaction. The calculation results well confirm the d-d interaction model, where alloys with the position of the antibonding state close to the Fermi level exhibit excellent water dissociation ability in the water-gas shift reaction. However, the catalytic performance of the Mn-doped alloy is unsatisfactory, which is caused by its own special phenomenon.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA