Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Headache Pain ; 20(1): 116, 2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31856703

RESUMEN

BACKGROUND: Resting-state functional magnetic resonance imaging (fMRI) has confirmed disrupted visual network connectivity in migraine without aura (MwoA). The thalamus plays a pivotal role in a number of pain conditions, including migraine. However, the significance of altered thalamo-visual functional connectivity (FC) in migraine remains unknown. The goal of this study was to explore thalamo-visual FC integrity in patients with MwoA and investigate its clinical significance. METHODS: Resting-state fMRI data were acquired from 33 patients with MwoA and 22 well-matched healthy controls. After identifying the visual network by independent component analysis, we compared neural activation in the visual network and thalamo-visual FC and assessed whether these changes were linked to clinical characteristics. We used voxel-based morphometry to determine whether functional differences were dependent on structural differences. RESULTS: The visual network exhibited significant differences in regions (bilateral cunei, right lingual gyrus and left calcarine sulcus) by inter-group comparison. The patients with MwoA showed significantly increased FC between the left thalami and bilateral cunei and between the right thalamus and the contralateral calcarine sulcus and right cuneus. Furthermore, the neural activation of the left calcarine sulcus was positively correlated with visual analogue scale scores (r = 0.319, p = 0.043), and enhanced FC between the left thalamus and right cuneus in migraine patients was negatively correlated with Generalized Anxiety Disorder scores (r = - 0.617, p = 0.005). CONCLUSION: Our data suggest that migraine distress is exacerbated by aberrant feedback projections to the visual network, playing a crucial role in migraine physiological mechanisms. The current study provides further insights into the complex scenario of migraine mechanisms.


Asunto(s)
Migraña sin Aura/fisiopatología , Tálamo/fisiopatología , Corteza Visual/fisiopatología , Adulto , Encéfalo/fisiopatología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad
2.
Brain Imaging Behav ; 15(5): 2464-2471, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33479923

RESUMEN

The present study aimed to explore associations between brain activity in the auditory cortex and clinical and psychiatric characteristics in patients with migraine without aura (MwoA) during interictal periods. Resting-state data were acquired from patients with episodic MwoA (n = 34) and healthy controls (n = 30). Independent component analysis was used to extract and calculate the resting-state auditory network. Subsequently, we analyzed the correlations between spontaneous activity in the auditory cortex and clinical and psychiatric features in interictal MwoA. Compared with healthy controls, patients with MwoA showed increased activity in the left superior temporal gyrus (STG), postcentral gyrus (PoCG) and insula. Brain activity in the left STG was positively correlated with anxiety scores, and activity in the left PoCG was negatively correlated with anxiety and depression scores. No significant differences were found in intracranial volume between the two groups. This study indicated that functional impairment and altered integration linked to the auditory cortex existed in patients with MwoA in the interictal period, suggesting that auditory-associated cortex disruption as a biomarker may be implemented for the early diagnosis and prediction of neuropsychiatric impairment in interictal MwoA patients.


Asunto(s)
Epilepsia , Migraña sin Aura , Encéfalo/diagnóstico por imagen , Corteza Cerebral , Humanos , Imagen por Resonancia Magnética , Migraña sin Aura/diagnóstico por imagen , Migraña sin Aura/epidemiología
3.
Brain Imaging Behav ; 14(5): 1805-1814, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31183773

RESUMEN

Aberrant functional connectivity of brain networks has been demonstrated in migraine sufferers. Functional magnetic resonance imaging (fMRI) may illustrate altered connectivity in patients suffering from migraine without aura (MwoA). Here, we applied a seed-based approach based on limbic regions to investigate disrupted functional connectivity between spontaneous migraine attacks. Resting-state fMRI data were obtained from 28 migraine patients without aura and 23 well-matched healthy controls (HC). The functional connectivity of the limbic system was characterized using a seed-based whole-brain correlation method. The resulting functional connectivity measurements were assessed for correlations with other clinical features. Neuropsychological data revealed significantly increased connectivity between the limbic system (bilateral amygdala and right hippocampus) and left middle occipital gyrus (MOG), and a positive correlation was revealed between disease duration and connective intensity of the left amygdala and the ipsilateral MOG. There was decreased functional connectivity between the right amygdala and contralateral orbitofrontal cortex (OFC). In addition, resting-state fMRI showed that, compared to HC, patients without aura had significant functional connectivity consolidation between the bilateral hippocampus and cerebellum, and a negative correlation was detected between scores on the headache impact test (HIT) and connectivity intensity of the right hippocampus and bilateral cerebellum. There was decreased functional connectivity between the left hippocampus and three brain areas, encompassing the bilateral inferior parietal gyri (IPG) and contralateral supplementary motor area (SMA). There were no structural differences between the two groups. Our data suggest that migraine patients have disrupted limbic functional connectivity to pain-related regions of the modulatory and encoding cortices, which are associated with specific clinical characteristics. Disturbances of resting-state functional connectivity may play a key role in neuropathological features, perception and affection of migraine. The current study provides further insights into the complex scenario of migraine mechanisms. .


Asunto(s)
Sistema Límbico/diagnóstico por imagen , Sistema Límbico/fisiopatología , Migraña sin Aura/patología , Migraña sin Aura/fisiopatología , Vías Nerviosas/patología , Vías Nerviosas/fisiopatología , Adulto , Mapeo Encefálico , Femenino , Humanos , Sistema Límbico/patología , Imagen por Resonancia Magnética , Masculino , Migraña sin Aura/diagnóstico por imagen
4.
Front Neurosci ; 13: 1010, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31607851

RESUMEN

PURPOSE: The present study combined fractional amplitude of low-frequency fluctuations (fALFF), regional homogeneity (ReHo), and functional connectivity (FC) to explore brain functional abnormalities in acute tinnitus patients (AT) with hearing loss. METHODS: We recruited twenty-eight AT patients and 31 healthy controls (HCs) and ran resting-state functional magnetic resonance imaging (fMRI) scans. fALFF, ReHo, and FC were conducted and compared between AT patients and HCs. After that, we calculated correlation analyses among abnormal fALFF, ReHo, FC, and clinical data in AT patients. RESULTS: Compared with HCs, AT showed increased fALFF values in the right inferior temporal gyrus (ITG). In contrast, significantly decreased ReHo values were observed in the cerebellar vermis, the right calcarine cortex, the right precuneus, the right supramarginal gyrus (SMG), and the right middle frontal gyrus (MFG). Based on the differences in the fALFF and ReHo maps, the latter of which we defined as region-of-interest (ROI) for FC analysis, the right ITG exhibited increased connectivity with the right precentral gyrus. In addition, the right MFG demonstrated decreased connectivity with both the bilateral anterior cingulate cortex (ACC) and the left precentral gyrus. CONCLUSION: By combining ReHo, fALFF, and FC analyses, our work indicated that AT with hearing loss had abnormal intraregional neural activity and disrupted connectivity in several brain regions which mainly involving the non-auditory area, and these regions are major components of default mode network (DMN), attention network, visual network, and executive control network. These findings will help us enhance the understanding of the neuroimaging mechanism in tinnitus populations. Moreover, these abnormalities remind us that we should focus on the early stages of this hearing disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA