Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 38(13): e23790, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38982638

RESUMEN

Integrase strand transfer inhibitors (INSTIs) based antiretroviral therapy (ART) is currently used as first-line regimen to treat HIV infection. Despite its high efficacy and barrier to resistance, ART-associated neuropsychiatric adverse effects remain a major concern. Recent studies have identified a potential interaction between the INSTI, dolutegravir (DTG), and folate transport pathways at the placental barrier. We hypothesized that such interactions could also occur at the two major blood-brain interfaces: blood-cerebrospinal fluid barrier (BCSFB) and blood-brain barrier (BBB). To address this question, we evaluated the effect of two INSTIs, DTG and bictegravir (BTG), on folate transporters and receptor expression at the mouse BCSFB and the BBB in vitro, ex vivo and in vivo. We demonstrated that DTG but not BTG significantly downregulated the mRNA and/or protein expression of folate transporters (RFC/SLC19A1, PCFT/SLC46A1) in human and mouse BBB models in vitro, and mouse brain capillaries ex vivo. Our in vivo study further revealed a significant downregulation in Slc19a1 and Slc46a1 mRNA expression at the BCSFB and the BBB following a 14-day DTG oral treatment in C57BL/6 mice. However, despite the observed downregulatory effect of DTG in folate transporters/receptor at both brain barriers, a 14-day oral treatment of DTG-based ART did not significantly alter the brain folate level in animals. Interestingly, DTG treatment robustly elevated the mRNA and/or protein expression of pro-inflammatory cytokines and chemokines (Cxcl1, Cxcl2, Cxcl3, Il6, Il23, Il12) in primary cultures of mouse brain microvascular endothelial cells (BBB). DTG oral treatment also significantly upregulated proinflammatory cytokines and chemokine (Il6, Il1ß, Tnfα, Ccl2) at the BCSFB in mice. We additionally observed a downregulated mRNA expression of drug efflux transporters (Abcc1, Abcc4, and Abcb1a) and tight junction protein (Cldn3) at the CP isolated from mice treated with DTG. Despite the structural similarities, BTG only elicited minor effects on the markers of interest at both the BBB and BCSFB. In summary, our current data demonstrates that DTG but not BTG strongly induced inflammatory responses in a rodent BBB and BCSFB model. Together, these data provide valuable insights into the mechanism of DTG-induced brain toxicity, which may contribute to the pathogenesis of DTG-associated neuropsychiatric adverse effect.


Asunto(s)
Barrera Hematoencefálica , Compuestos Heterocíclicos con 3 Anillos , Oxazinas , Piperazinas , Piridonas , Animales , Ratones , Piperazinas/farmacología , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Oxazinas/farmacología , Inflamación/inducido químicamente , Inflamación/metabolismo , Ratones Endogámicos C57BL , Femenino , Inhibidores de Integrasa VIH/farmacología , Inhibidores de Integrasa VIH/efectos adversos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/metabolismo , Masculino , Antirretrovirales/efectos adversos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos
2.
Stroke ; 54(9): 2380-2389, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37497672

RESUMEN

BACKGROUND: An understanding of global, regional, and national macroeconomic losses caused by stroke is important for allocation of clinical and research resources. The authors investigated the macroeconomic consequences of stroke disease burden in the year 2019 in 173 countries. METHODS: Disability-adjusted life year data for overall stroke and its subtypes (ischemic stroke, intracerebral hemorrhage, and subarachnoid hemorrhage) were collected from the GBD study (Global Burden of Disease) 2019 database. Gross domestic product (GDP, adjusted for purchasing power parity [PPP]) data were collected from the World Bank; GDP and disability-adjusted life year data were combined to estimate macroeconomic losses using a value of lost welfare (VLW) approach. All results are presented in 2017 international US dollars adjusted for PPP. RESULTS: Globally, in 2019, VLW due to stroke was $2059.67 billion or 1.66% of the global GDP. Global VLW/GDP for stroke subtypes was 0.78% (VLW=$964.51 billion) for ischemic stroke, 0.71% (VLW=$882.81 billion) for intracerebral hemorrhage, and 0.17% (VLW=$212.36 billion) for subarachnoid hemorrhage. The Central European, Eastern European, and Central Asian GBD super-region reported the highest VLW/GDP for stroke overall (3.01%), ischemic stroke (1.86%), and for subarachnoid hemorrhage (0.26%). The Southeast Asian, East Asian, and Oceanian GBD super-region reported the highest VLW/GDP for intracerebral hemorrhage (1.48%). CONCLUSIONS: The global macroeconomic consequences related to stroke are vast even when considering stroke subtypes. The present quantification may be leveraged to help justify increased spending of finite resources on stroke in an effort to improve outcomes for patients with stroke globally.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Hemorragia Subaracnoidea , Humanos , Salud Global , Hemorragia Subaracnoidea/epidemiología , Accidente Cerebrovascular/epidemiología , Hemorragia Cerebral/epidemiología
3.
Fluids Barriers CNS ; 20(1): 84, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37981683

RESUMEN

BACKGROUND: Folates (Vitamin B9) are critical for normal neurodevelopment and function, with transport mediated by three major pathways: folate receptor alpha (FRα), proton-coupled folate transporter (PCFT), and reduced folate carrier (RFC). Cerebral folate uptake primarily occurs at the blood-cerebrospinal fluid barrier (BCSFB) through concerted actions of FRα and PCFT, with impaired folate transport resulting in the neurological disorder cerebral folate deficiency (CFD). Increasing evidence suggests that disorders associated with CFD also present with neuroinflammation, oxidative stress, and mitochondrial dysfunction, however the role of brain folate deficiency in inducing these abnormalities is not well-understood. Our laboratory has identified the upregulation of RFC by nuclear respiratory factor 1 (NRF-1) at the blood-brain barrier (BBB) once indirectly activated by the natural compound pyrroloquinoline quinone (PQQ). PQQ is also of interest due to its anti-inflammatory, antioxidant, and mitochondrial biogenesis effects. In this study, we examined the effects of folate deficiency and PQQ treatment on inflammatory and oxidative stress responses, and changes in mitochondrial function. METHODS: Primary cultures of mouse mixed glial cells exposed to folate-deficient (FD) conditions and treated with PQQ were analyzed for changes in gene expression of the folate transporters, inflammatory markers, oxidative stress markers, and mitochondrial DNA (mtDNA) content through qPCR analysis. Changes in cellular reactive oxygen species (ROS) levels were analyzed in vitro through a DCFDA assay. Wildtype (C57BL6/N) mice exposed to FD (0 mg/kg folate), or control (2 mg/kg folate) diets underwent a 10-day (20 mg/kg/day) PQQ treatment regimen and brain tissues were collected and analyzed. RESULTS: Folate deficiency resulted in increased expression of inflammatory and oxidative stress markers in vitro and in vivo, with increased cellular ROS levels observed in mixed glial cells as well as a reduction of mitochondrial DNA (mtDNA) content observed in FD mixed glial cells. PQQ treatment was able to reverse these changes, while increasing RFC expression through activation of the PGC-1α/NRF-1 signaling pathway. CONCLUSION: These results demonstrate the effects of brain folate deficiency, which may contribute to the neurological deficits commonly seen in disorders of CFD. PQQ may represent a novel treatment strategy for disorders associated with CFD, as it can increase folate uptake, while in parallel reversing many abnormalities that arise with brain folate deficiency.


Asunto(s)
Encéfalo , Cofactor PQQ , Animales , Ratones , Cofactor PQQ/farmacología , Cofactor PQQ/uso terapéutico , Especies Reactivas de Oxígeno , Ácido Fólico/farmacología , ADN Mitocondrial
4.
Front Cell Dev Biol ; 11: 1271575, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37860820

RESUMEN

Oncolytic viral (OV) therapies are promising novel treatment modalities for cancers refractory to conventional treatment, such as glioblastoma, within the central nervous system (CNS). Although OVs have received regulatory approval for use in the CNS, efficacy is hampered by obstacles related to delivery, under-/over-active immune responses, and the "immune-cold" nature of most CNS malignancies. SUMO, the Small Ubiquitin-like Modifier, is a family of proteins that serve as a high-level regulator of a large variety of key physiologic processes including the host immune response. The SUMO pathway has also been implicated in the pathogenesis of both wild-type viruses and CNS malignancies. As such, the intersection of OV biology with the SUMO pathway makes SUMOtherapeutics particularly interesting as adjuvant therapies for the enhancement of OV efficacy alone and in concert with other immunotherapeutic agents. Accordingly, the authors herein provide: 1) an overview of the SUMO pathway and its role in CNS malignancies; 2) describe the current state of CNS-targeted OVs; and 3) describe the interplay between the SUMO pathway and the viral lifecycle and host immune response.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA