Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Med Sci ; 21(2): 357-368, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38169666

RESUMEN

This study investigated the potential role of the mouse homolog of bombesin receptor-activated protein (BRAP) in imiquimod (IMQ) induced psoriasis - like skin inflammation. The expression of both human BRAP, encoded by C6orf89, and its mouse homolog, encoded by BC004004, has been found to be expressed abundantly in the keratinocytes. BC004004 knockout mice (BC004004-/-) were topically treated with IMQ daily for 7 days to test whether they were more vulnerable to psoriasis - like inflammation. We found that those mice exhibited an altered pattern of inflammation process compared to isogenic wild type control mice (BC004004+/+). BC004004-/- mice developed skin lesions with earlier and more acute onset, as well as a quicker remission. The cytokines related to pathogenesis of psoriasis also exhibited different expression patterns in IMQ treated BC004004-/- mice. On day 4 of IMQ treatment, BC004004-/- mice exhibited a higher expression level of IL-17A compared to BC004004+/+ mice, suggesting a more robust activation of Th17 cells in the knockout mice. The serum level of thymic stromal lymphopoietin (TSLP), one of the keratinocyte derived cytokines, was also increased in BC004004-/- mice and reached its peak on day 4. Knockdown of BRAP in cultured human keratinocyte-derived HaCaT cells by siRNA silencing led to increased release of TSLP. Our data suggest that the elevated of level of TSLP released from keratinocytes due to BRAP deficiency might mediate the crosstalk between the epidermal cells and immune cells and thereby contributing to the altered pathological changes observed in psoriasis - like skin lesion in knockout mice.


Asunto(s)
Psoriasis , Receptores de Bombesina , Ratones , Humanos , Animales , Receptores de Bombesina/genética , Receptores de Bombesina/metabolismo , Queratinocitos/metabolismo , Imiquimod/metabolismo , Inflamación/patología , Citocinas/metabolismo , Ratones Noqueados , Modelos Animales de Enfermedad , Piel/patología , Ratones Endogámicos BALB C
2.
Acta Biochim Biophys Sin (Shanghai) ; 56(5): 753-762, 2024 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-38602002

RESUMEN

Adhesion molecules play critical roles in maintaining the structural integrity of the airway epithelium in airways under stress. Previously, we reported that catenin alpha-like 1 (CTNNAL1) is downregulated in an asthma animal model and upregulated at the edge of human bronchial epithelial cells (HBECs) after ozone stress. In this work, we explore the potential role of CTNNAL1 in the structural adhesion of HBECs and its possible mechanism. We construct a CTNNAL1 ‒/‒ mouse model with CTNNAL1-RNAi recombinant adeno-associated virus (AAV) in the lung and a CTNNAL1-silencing cell line stably transfected with CTNNAL1-siRNA recombinant plasmids. Hematoxylin and eosin (HE) staining reveals that CTNNAL1 ‒/‒ mice have denuded epithelial cells and structural damage to the airway. Silencing of CTNNAL1 in HBECs inhibits cell proliferation and weakens extracellular matrix adhesion and intercellular adhesion, possibly through the action of the cytoskeleton. We also find that the expressions of the structural adhesion-related molecules E-cadherin, integrin ß1, and integrin ß4 are significantly decreased in ozone-treated cells than in vector control cells. In addition, our results show that the expression levels of RhoA/ROCK1 are decreased after CTNNAL1 silencing. Treatment with Y27632, a ROCK inhibitor, abolished the expressions of adhesion molecules induced by ozone in CTNNAL1-overexpressing HBECs. Overall, the findings of the present study suggest that CTNNAL1 plays a critical role in maintaining the structural integrity of the airway epithelium under ozone challenge, and is associated with epithelial cytoskeleton dynamics and the expressions of adhesion-related molecules via the RhoA/ROCK1 pathway.


Asunto(s)
Bronquios , Células Epiteliales , Transducción de Señal , Quinasas Asociadas a rho , Proteína de Unión al GTP rhoA , Animales , Humanos , Ratones , alfa Catenina/metabolismo , alfa Catenina/genética , Bronquios/citología , Bronquios/metabolismo , Adhesión Celular , Línea Celular , Proliferación Celular , Células Epiteliales/metabolismo , Ozono , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/genética , Proteína de Unión al GTP rhoA/metabolismo
3.
J Allergy Clin Immunol ; 151(2): 431-446.e16, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36243221

RESUMEN

BACKGROUND: Airway epithelial cells (AECs) with impaired barrier function contribute to airway remodeling through the activation of epithelial-mesenchymal trophic units (EMTUs). Although the decreased expression of ITGB4 in AECs is implicated in the pathogenesis of asthma, how ITGB4 deficiency impacts airway remodeling remains obscure. OBJECTIVE: This study aims to determine the effect of epithelial ITGB4 deficiency on the barrier function of AECs, asthma susceptibility, airway remodeling, and EMTU activation. METHODS: AEC-specific ITGB4 conditional knockout mice (ITGB4-/-) were generated and an asthma model was employed by the sensitization and challenge of house dust mite (HDM). EMTU activation-related growth factors were examined in ITGB4-silenced primary human bronchial epithelial cells of healthy subjects after HDM stimulation. Dexamethasone, the inhibitors of JNK phosphorylation or FGF2 were administered for the identification of the molecular mechanisms of airway remodeling in HDM-exposed ITGB4-/- mice. RESULTS: ITGB4 deficiency in AECs enhanced asthma susceptibility and airway remodeling by disrupting airway epithelial barrier function. Aggravated airway remodeling in HDM-exposed ITGB4-/- mice was induced through the enhanced activation of EMTU mediated by Src homology domain 2-containing protein tyrosine phosphatase 2/c-Jun N-terminal kinase/Jun N-terminal kinase-dependent transcription factor/FGF2 (SHP2/JNK/c-Jun/FGF2) signaling pathway, which was partially independent of airway inflammation. Both JNK and FGF2 inhibitors significantly inhibited the aggravated airway remodeling and EMTU activation in HDM-exposed ITGB4-/- mice. CONCLUSIONS: Airway epithelial ITGB4 deficiency induces airway remodeling in a mouse model of asthma through enhanced EMTU activation that is regulated by the SHP2/JNK/c-Jun/FGF2 pathway.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Asma , Humanos , Ratones , Animales , Remodelación de las Vías Aéreas (Respiratorias)/fisiología , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Sistema Respiratorio/metabolismo , Asma/patología , Pyroglyphidae , Dermatophagoides pteronyssinus , Células Epiteliales/metabolismo , Ratones Noqueados , Modelos Animales de Enfermedad , Integrina beta4/genética , Integrina beta4/metabolismo
4.
J Cell Mol Med ; 27(23): 3760-3772, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37698050

RESUMEN

Neonatal respiratory system disease is closely associated with embryonic lung development. Our group found that integrin ß4 (ITGB4) is downregulated in the airway epithelium of asthma patients. Asthma is the most common chronic respiratory illness in childhood. Therefore, we suspect whether the deletion of ITGB4 would affect fetal lung development. In this study, we characterized the role of ITGB4 deficiency in bronchopulmonary dysplasia (BPD). ITGB4 was conditionally knocked out in CCSP-rtTA, Tet-O-Cre and ITGB4f/f triple transgenic mice. Lung tissues at different developmental stages were collected for experimental detection and transcriptome sequencing. The effects of ITGB4 deficiency on lung branching morphogenesis were observed by fetal mouse lung explant culture. Deleting ITGB4 from the airway epithelial cells results in enlargement of alveolar airspaces, inhibition of branching, the abnormal structure of epithelium cells and the impairment of cilia growth during lung development. Scanning electron microscopy showed that the airway epithelial cilia of the ß4ccsp.cre group appear to be sparse, shortened and lodging. Lung-development-relevant factors such as SftpC and SOX2 significantly decreased both mRNA and protein levels. KEGG pathway analysis indicated that multiple ontogenesis-regulating-relevant pathways converge to FAK. Accordingly, ITGB4 deletion decreased phospho-FAK, phospho-GSK3ß and SOX2 levels, and the correspondingly contrary consequence was detected after treatment with GSK3ß agonist (wortmannin). Airway branching defect of ß4ccsp.cre mice lung explants was also partly recovered after wortmannin treatment. Airway epithelial-specific deletion of ITGB4 contributes to lung developmental defect, which could be achieved through the FAK/GSK3ß/SOX2 signal pathway.


Asunto(s)
Asma , Displasia Broncopulmonar , Integrina beta4 , Animales , Humanos , Recién Nacido , Ratones , Asma/metabolismo , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/metabolismo , Células Epiteliales/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Integrina beta4/genética , Integrina beta4/metabolismo , Pulmón/metabolismo , Ratones Transgénicos , Wortmanina/metabolismo
5.
Stress ; 26(1): 1-14, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36520154

RESUMEN

Bombesin receptor-activated protein (BRAP) and its homologous protein in mice, which is encoded by bc004004 gene, were expressed abundantly in brain tissues with unknown functions. We treated bc004004-/- mice with chronic unpredictable mild stress (CUMS) to test whether those mice were more vulnerable to stress-related disorders. The results of forced swimming test, sucrose preference test, and open field test showed that after being treated with CUMS for 28 days or 35 days both bc004004-/- and bc004004+/+ mice exhibited behavioural changes and there was no significant difference between bc004004+/+ and bc004004-/-. However, behavioural changes were observed only in bc004004-/- mice after being exposed to CUMS for 21 days, but not in bc004004+/+ after 21-day CUMS exposure, indicating that lack of BRAP homologous protein may cause vulnerability to stress-related disorders in mice. In addition, bc004004-/- mice showed a reduction in recognition memory as revealed by novel object recognition test. Since memory changes and stress related behavioural changes are all closely related to the hippocampus function we further analyzed the changes of dendrites and synapses of hippocampal neurons as well as expression levels of some proteins closely related to synaptic function. bc004004-/- mice exhibited decreased dendritic lengths and increased amount of immature spines, as well as altered expression pattern of synaptic related proteins including GluN2A, synaptophysin and BDNF in the hippocampus. Those findings suggest that BRAP homologous protein may have a protective effect on the behavioural response to stress via regulating dendritic spine formation and synaptic plasticity in the hippocampus.


Asunto(s)
Bombesina , Espinas Dendríticas , Hipocampo , Plasticidad Neuronal , Receptores de Bombesina , Estrés Psicológico , Animales , Ratones , Bombesina/genética , Bombesina/metabolismo , Enfermedad Crónica , Espinas Dendríticas/genética , Espinas Dendríticas/metabolismo , Espinas Dendríticas/patología , Depresión/genética , Depresión/metabolismo , Depresión/patología , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Hipocampo/patología , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Receptores de Bombesina/genética , Receptores de Bombesina/metabolismo , Estrés Psicológico/genética , Estrés Psicológico/metabolismo , Estrés Psicológico/patología
6.
Acta Biochim Biophys Sin (Shanghai) ; 55(10): 1618-1629, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37715489

RESUMEN

The downregulation of adhesion molecule catenin alpha-like 1 (CTNNAL1) in airway epithelial cells of asthma patients and house dust mite (HDM)-induced asthma animal models was illustrated in our previous study. It is assumed to contribute to airway inflammation and mucus hypersecretion. In this work, we further explore the underlying mechanism of CTNNAL1 in asthma. CTNNAL1-silenced female mice exhibit a decreased level of cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated and ATP-gated Cl - channel that correlates with mucus hypersecretion. Our previous study demonstrated that ROCK1 expression decreases but ROCK2 expression increases in the lungs of a CTNNAL1-silenced mouse model. Inhibition of ROCK1 leads to a reduction in CFTR expression in CTNNAL1-overexpressing and CTNNAL1-silenced human bronchial epithelial (HBE) cells. It has been reported that ROCK1 is a downstream target of RhoA and that activation of RhoA increases CFTR expression after CTNNAL1 deficiency in vitro and in vivo. The above results indicate that CTNNAL1 regulates CFTR expression through the ROCK1 pathway. In addition, the expression of CFTR-associated ligand (CAL) is increased after CTNNAL1 silencing, and immunoprecipitation results confirm the interaction between ROCK1 and CAL. Inhibition of CAL does not influence ROCK1 expression but increases CFTR expression in CTNNAL1-silenced HBE cells. These data suggest that CTNNAL1 deficiency decreases CFTR expression in the HDM-induced asthma mouse model through the ROCK1-CAL signaling pathway.


Asunto(s)
Asma , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Animales , Femenino , Humanos , Ratones , alfa Catenina/metabolismo , Asma/inducido químicamente , Asma/genética , Asma/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Pyroglyphidae/metabolismo , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo , Transducción de Señal
7.
J Cell Mol Med ; 26(5): 1656-1671, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35092120

RESUMEN

Our previous study indicated that adhesion molecule catenin alpha-like 1(CTNNAL1) is downregulated in airway epithelial cells of asthma patients and asthma animal model but little is known about how the CTNNAL1 affects asthma pathogenesis. To reveal the direct relationship between asthma and CTNNAL1, CTNNAL1-deficient mouse model in bronchopulmonary tissue was constructed by introducing CTNNAL1-siRNA sequence using adeno-associated virus (AAV) as vector. The mouse model of asthma was established by stimulation of house dust mite (HDM). After HDM-challenged, there was marked airway inflammation, especially mucus hypersecretion in the CTNNAL1-deficient mice. In addition, the CTNNAL1-deficient mice exhibited an increase of lung IL-4 and IL-13 levels, as well as a significant increase of goblet cell hyperplasia and MUC5AC after HDM exposure. The expression of Yes-associated protein (YAP), protein that interacted with α-catenin, was downregulated after CTNNAL1 silencing and was upregulated due to its overexpression. In addition, the interaction between CTNNAL1 and YAP was confirmed by CO-IP. Besides, inhibition of YAP could decrease the secretion of MUC5AC, IL-4 and IL-13 in CTNNAL1-deficient 16HBE14o-cells. Above results indicated us that CTNNAL1 regulated mucus hypersecretion through YAP pathway. In addition, the expression of ROCK2 increased when CTNNAL1 was silenced and decreased after YAP silencing, and inhibition of YAP decreased the expression of ROCK2 in CTNNAL1-deficient HBE cells. Inhibition of ROCK2 decreased MUC5AC expression and IL-13 secretion. In all, our study demonstrates that CTNNAL1 plays an important role in HDM-induced asthma, mediating mucus secretion through the YAP-ROCK2 pathway.


Asunto(s)
Asma , Interleucina-13 , Animales , Asma/etiología , Modelos Animales de Enfermedad , Humanos , Interleucina-13/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , Moco/metabolismo , Pyroglyphidae , alfa Catenina/metabolismo , Quinasas Asociadas a rho/metabolismo
8.
Sheng Li Xue Bao ; 74(3): 479-488, 2022 Jun 25.
Artículo en Zh | MEDLINE | ID: mdl-35770645

RESUMEN

Cell aging is an extremely complex process, which is characterized by mitochondrial structural dysfunction, telomere shortening, inflammatory microenvironment, protein homeostasis imbalance, epigenetic changes, abnormal DNA damage and repair, etc. Aging is usually accompanied by structural and functional damage of tissues and organs which further induces the occurrence and development of aging-related diseases. Aging includes physiological aging caused by increased age and pathological aging induced by a variety of factors. Noteworthy, as a target organ directly contacting with the outside air, lung is more prone to various stimuli, causing pathological premature aging which is lung aging. Studies have found that there is a certain proportion of senescent cells in the lungs of most chronic respiratory diseases. However, the underlying mechanism by which these senescent cells induce lung senescence and their role in chronic respiratory diseases is still obscure. This paper focuses on the causes and classification of lung aging, the internal mechanism of lung aging involved in chronic respiratory diseases, and the application of anti-aging treatments in chronic respiratory diseases. We hope to provide new research ideas and theoretical basis for the clinical prevention and treatment in chronic respiratory diseases.


Asunto(s)
Enfermedades Pulmonares , Trastornos Respiratorios , Envejecimiento/patología , Senescencia Celular , Humanos , Pulmón/patología , Enfermedades Pulmonares/patología , Trastornos Respiratorios/patología , Telómero , Acortamiento del Telómero
9.
J Cell Mol Med ; 25(22): 10565-10574, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34636482

RESUMEN

Respiratory syncytial virus (RSV) infection in airway epithelial cells is the main cause of bronchiolitis in children. Excessive mucus secretion is one of the primary symbols in RSV related lower respiratory tract infections (RSV-related LRTI). However, the pathological processes of mucus hypersecretion in RSV-infected airway epithelial cells remains unclear. The current study explores the involvement of miR-34b/miR-34c in mucus hypersecretion in RSV-infected airway epithelial cells by targeting FGFR1. First, miR-34b/miR-34c and FGFR1 mRNA were quantified by qPCR in throat swab samples and cell lines, respectively. Then, the luciferase reporters' assay was designed to verify the direct binding between FGFR1 and miR-34b/miR-34c. Finally, the involvement of AP-1 signalling was assessed by western blot. This study identified that miR-34b/miR-34c was involved in c-Jun-regulated MUC5AC production by targeting FGFR1 in RSV-infected airway epithelial cells. These results provide some useful insights into the molecular mechanisms of mucus hypersecretion which may also bring new potential strategies to improve mucus hypersecretion in RSV disease.


Asunto(s)
MicroARNs/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/virología , Infecciones por Virus Sincitial Respiratorio/genética , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitiales Respiratorios/fisiología , Biomarcadores , Línea Celular , Susceptibilidad a Enfermedades , Células Epiteliales/metabolismo , Células Epiteliales/virología , Expresión Génica , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Humanos , Inmunohistoquímica , Mucina 5AC/genética , Interferencia de ARN , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Factor de Transcripción AP-1/metabolismo
10.
J Cell Mol Med ; 25(18): 8579-8587, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34378306

RESUMEN

As the direct contacting site for pathogens and allergens, the mucosal barrier plays a vital role in the lungs and intestines. Innate lymphoid cells (ILCs) are particularly resident in the mucosal barrier and participate in several pathophysiological processes, such as maintaining or disrupting barrier integrity, preventing various pathogenic invasions. In the pulmonary mucosae, ILCs sometimes aggravate inflammation and mucus hypersecretion but restore airway epithelial integrity and maintain lung tissue homeostasis at other times. In the intestinal mucosae, ILCs can increase epithelial permeability, leading to severe intestinal inflammation on the one hand, and assist mucosal barrier in resisting bacterial invasion on the other hand. In this review, we will illustrate the positive and negative roles of ILCs in mucosal barrier immunity.


Asunto(s)
Mucosa Intestinal/inmunología , Linfocitos/inmunología , Mucosa Respiratoria/inmunología , Animales , Humanos , Inmunidad Innata , Linfocitos/citología
11.
J Cell Physiol ; 236(11): 7711-7724, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34018612

RESUMEN

Airway epithelial cells, the first barrier of the respiratory tract, play an indispensable role in innate immunity. Integrin ß4 (ITGB4) is a structural adhesion molecule that is involved in the pathological progression of acute inflammatory diseases and is downregulated in asthmatic patients. Research has shown that endothelial ITGB4 has proinflammatory properties in acute lung injury (ALI). However, the role of epithelial ITGB4 in a murine ALI model is still unknown. This study investigated the role of ITGB4 in lipopolysaccharide (LPS)-induced ALI. We found that ITGB4 in the airway epithelium had remarkably increased after the introduction of LPS in vivo and in vitro. Then, we constructed airway epithelial cell-specific ITGB4 knockout (ITGB4-/- ) mice to study its role in ALI. At a time point of 12 h after the tracheal injection of LPS, ITGB4-/- mice showed increased macrophages (mainly M1-type macrophages) and neutrophil infiltration into the lungs; inflammation-related proteins including interleukin (IL)-6, tumor necrosis factor, and IL-17A were significantly elevated compared to their levels in ITGB4+/+ mice. Furthermore, we investigated the role of ITGB4 in the anti-inflammatory response. Intriguingly, in the ITGB4-/- + LPS group, we found significantly reduced expression of anti-inflammatory factors, including IL-10 messenger RNA (mRNA) and ARG-1 mRNA. We also observed that monocyte chemotactic protein (MCP-1) increased significantly both in vivo and in vitro. Airway epithelium activates macrophages, most likely driven by MCP-1, which we confirmed in the coculture of epithelia and macrophages. These phenomena indicate that ITGB4 in airway epithelial cells plays an important role in the process of inflammation and activation of macrophages in ALI. Overall, these data demonstrated a novel link between airway epithelial ITGB4 and the inflammatory response in LPS-induced ALI.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Células Epiteliales/metabolismo , Integrina beta4/metabolismo , Pulmón/metabolismo , Neumonía/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/inmunología , Lesión Pulmonar Aguda/patología , Animales , Células Cultivadas , Técnicas de Cocultivo , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Células Epiteliales/inmunología , Células Epiteliales/patología , Humanos , Mediadores de Inflamación/metabolismo , Integrina beta4/genética , Lipopolisacáridos , Pulmón/inmunología , Pulmón/patología , Activación de Macrófagos , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones Noqueados , Infiltración Neutrófila , Neutrófilos/inmunología , Neutrófilos/metabolismo , Neumonía/inducido químicamente , Neumonía/inmunología , Neumonía/patología
12.
Sheng Li Xue Bao ; 73(6): 1043-1053, 2021 Dec 25.
Artículo en Zh | MEDLINE | ID: mdl-34961879

RESUMEN

Lower respiratory tract infection (LRTI) induced by respiratory syncytial virus (RSV) is an important cause of hospitalization for infants. Compared with adults, infants are more likely to cause serious respiratory diseases after RSV infection due to the specific immature airway structure and immune system. The balance of immune resistance and immune tolerance of the host is critical to effective virus clearance and disease control. This paper reviews the relationship between RSV infection and respiratory diseases in infancy, the influence factors of the high pathogenicity of RSV infection in early life, as well as the research progress of anti-RSV therapy, and expands the specific molecular events regulating immune resistance and immune tolerance. We expect to present new ideas for the prevention and treatment of RSV-related respiratory diseases in clinical practice.


Asunto(s)
Trastornos Respiratorios , Infecciones por Virus Sincitial Respiratorio , Infecciones del Sistema Respiratorio , Humanos , Lactante , Virus Sincitiales Respiratorios
13.
J Cell Mol Med ; 24(21): 12694-12705, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32939938

RESUMEN

Severe RSV infection is the main cause of hospitalization to children under the age of five. The regulation of miRNAs on the severity of RSV infection is unclear. The aim of the study was to identify the critical differential expression miRNAs (DE miRNAs) that can regulate the pathological response in RSV-infected airway epithelial cells. In this study, miRNA and mRNA chips of RSV-infected airway epithelia from Gene Expression Omnibus (GEO) were screened and analysed, separately. DE miRNAs-targeted genes were performed for further pathway and process enrichment analysis. DE miRNA-targeted gene functional network was constructed on the basis of miRNA-mRNA interaction. The screened critical miRNA was also investigated by bioinformatics analysis. Then, RSV-infected human bronchial epithelial cells (HBECs) were constructed to verify the expression of the DE miRNAs. Finally, specific synthetic DE miRNAs mimics were used to confirm the effect of DE miRNAs on the RSV-infected HBECs. 45 DE miRNAs were identified from GEO62306 dataset. Our results showed that hsa-mir-34b-5p and hsa-mir-34c-5p decreased significantly in HBECs after RSV infection. Consistent with the biometric analysis, hsa-mir-34b/c-5p is involved in the regulation of mucin expression gene MUC5AC. In RSV-infected HBECs, the inducement of MUC5AC production by decreased hsa-mir-34b/c-5p was partly mediated through activation of c-Jun. These findings provide new insights into the mechanism of mucus obstruction after RSV infection and represent valuable targets for RSV infection and airway obstruction treatment.


Asunto(s)
Regulación hacia Abajo/genética , Células Epiteliales/metabolismo , Células Epiteliales/virología , Pulmón/patología , MicroARNs/genética , Moco/metabolismo , Infecciones por Virus Sincitial Respiratorio/genética , Infecciones por Virus Sincitial Respiratorio/virología , Antracenos/farmacología , Niño , Regulación hacia Abajo/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Perfilación de la Expresión Génica , Ontología de Genes , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , MicroARNs/metabolismo , Mucina 5AC/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
14.
J Cell Mol Med ; 24(5): 2761-2771, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31970850

RESUMEN

Lung immune responses to respiratory pathogens and allergens are initiated in early life which will further influence the later onset of asthma. The airway epithelia form the first mechanical physical barrier to allergic stimuli and environmental pollutants, which is also the key regulator in the initiation and development of lung immune response. However, the epithelial regulation mechanisms of early-life lung immune responses are far from clear. Our previous study found that integrin ß4 (ITGB4) is decreased in the airway epithelium of asthma patients with specific variant site. ITGB4 deficiency in adult mice aggravated the lung Th2 immune responses and enhanced airway hyper-responsiveness (AHR) with a house dust mite (HDM)-induced asthma model. However, the contribution of ITGB4 to the postnatal lung immune response is still obscure. Here, we further demonstrated that ITGB4 deficiency following birth mediates spontaneous lung inflammation with ILC2 activation and increased infiltration of eosinophils and lymphocytes. Moreover, ITGB4 deficiency regulated thymic stromal lymphopoietin (TSLP) production in airway epithelial cells through EGFR pathways. Neutralization of TSLP inhibited the spontaneous inflammation significantly in ITGB4-deficient mice. Furthermore, we also found that ITGB4 deficiency led to exaggerated lung allergic inflammation response to HDM stress. In all, these findings indicate that ITGB4 deficiency in early life causes spontaneous lung inflammation and induces exaggerated lung inflammation response to HDM aeroallergen.


Asunto(s)
Células Epiteliales/metabolismo , Hipersensibilidad/complicaciones , Hipersensibilidad/inmunología , Integrina beta4/metabolismo , Pulmón/patología , Neumonía/complicaciones , Animales , Animales Recién Nacidos , Hiperreactividad Bronquial/complicaciones , Citocinas/metabolismo , Células Epiteliales/patología , Receptores ErbB/metabolismo , Hipersensibilidad/parasitología , Hipersensibilidad/fisiopatología , Pulmón/parasitología , Linfocitos/inmunología , Ratones Transgénicos , Fosforilación , Pyroglyphidae/fisiología , Linfopoyetina del Estroma Tímico
15.
J Transl Med ; 18(1): 467, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33298101

RESUMEN

BACKGROUND: Late-onset asthma (LOA) is beginning to account for an increasing proportion of asthma patients, which is often underdiagnosed in the elderly. Studies on the possible relations between aging-related genes and LOA contribute to the diagnosis and treatment of LOA. Forkhead Box O3 (FOXO3) and TP53 are two classic aging-related genes. DNA methylation varies greatly with age which may play an important role in the pathogenesis of LOA. We supposed that the differentially methylated sites of FOXO3 and TP53 associated with clinical phenotypes of LOA may be useful biomarkers for the early screening of LOA. METHODS: The mRNA expression and DNA methylation of FOXO3 and TP53 in peripheral blood of 43 LOA patients (15 mild LOA, 15 moderate LOA and 13 severe LOA) and 60 healthy controls (HCs) were determined. The association of methylated sites with age was assessed by Cox regression to control the potential confounders. Then, the correlation between differentially methylated sites (DMSs; p-value < 0.05) and clinical lung function in LOA patients was evaluated. Next, candidate DMSs combining with age were evaluated to predict LOA by receiver operating characteristic (ROC) analysis and principal components analysis (PCA). Finally, HDM-stressed asthma model was constructed, and DNA methylation inhibitor 5-Aza-2'-deoxycytidine (5-AZA) were used to determine the regulation of DNA methylation on the expression of FOXO3 and TP53. RESULTS: Compared with HCs, the mRNA expression and DNA methylation of FOXO3 and TP53 vary significantly in LOA patients. Besides, 8 DMSs from LOA patients were identified. Two of the DMSs, chr6:108882977 (FOXO3) and chr17:7591672 (TP53), were associated with the severity of LOA. The combination of the two DMSs and age could predict LOA with high accuracy (AUC values = 0.924). In HDM-stressed asthma model, DNA demethylation increased the expression of FOXO3 and P53. CONCLUSIONS: The mRNA expression of FOXO3 and TP53 varies significantly in peripheral blood of LOA patients, which may be due to the regulation of DNA methylation. FOXO3 and TP53 methylation is a suitable blood biomarker to predict LOA, which may be useful targets for the risk diagnosis and clinical management of LOA.


Asunto(s)
Asma , Metilación de ADN , Anciano , Asma/diagnóstico , Asma/genética , Biomarcadores , Proteína Forkhead Box O3/sangre , Proteína Forkhead Box O3/genética , Humanos , Pulmón/metabolismo , Fenotipo , Proteína p53 Supresora de Tumor/sangre , Proteína p53 Supresora de Tumor/genética
16.
Clin Exp Allergy ; 50(10): 1127-1139, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32618381

RESUMEN

BACKGROUND: Integrin ß4 (ITGB4) is a hemi-desmosome protein which is downregulated in the airway epithelial cells of asthma patients. The proximal promoters and exons of ITGB4 contain CpG islands or multiple CpG sites both in human and mice, which indicated the possible methylation regulation of ITGB4 in airway epithelial cells. OBJECTIVE: We sought to unveil that DNA methylation regulates the decreased ITGB4 during the pathogenesis of asthma. METHODS: Mice were exposed to house dust mite (HDM) extracts to construct an asthma model. 5-Aza-2'-deoxycytidine (5-AZA) or dexamethasone (DEX) were added in the last two weeks. Besides, the primary human bronchial epithelial (HBE) cells were incubated for the detection of ITGB4 expression and methylation status after HDM stress. Furthermore, DNA methylation of ITGB4 in peripheral blood was measured in asthma patients. Logistic regression was employed to evaluate the association between methylation sites and asthma patients' ages in the control of potential confounders. Moreover, the correlations between differentially methylated sites (DMSs) and clinical parameters in asthma patients were assessed. Finally, the ability of candidate DMSs to predict asthma was evaluated by receiver operating characteristic (ROC) analysis and principal component analysis (PCA). RESULTS: We found that in HDM-stressed asthma model, DNA methylation regulated the reduced ITGB4 expression in airway epithelial cells. Moreover, alteration in the specific CpG sites (chr17:73717720 and chr17:73717636) of ITGB4 may regulate ITGB4 expression and further may be associated with the clinically phenotypic of asthma. The specific DMSs of ITGB4 in peripheral blood can distinguish asthma patients from healthy controls (HCs) effectively. CONCLUSIONS AND CLINICAL RELEVANCE: This study confirmed that DNA methylation regulates the decreased expression of ITGB4 in the airway epithelial cells of asthma patients. These results supply some useful insights to the mechanism of the decreased ITGB4 in asthmatic airway epithelial and provide possible targets for early prediction and screening of asthma.


Asunto(s)
Asma/genética , Metilación de ADN , Epigénesis Genética , Células Epiteliales/metabolismo , Integrina beta4/genética , Pulmón/metabolismo , Pyroglyphidae/inmunología , Adulto , Animales , Asma/sangre , Asma/inmunología , Asma/fisiopatología , Biomarcadores/sangre , Estudios de Casos y Controles , Células Cultivadas , Islas de CpG , Modelos Animales de Enfermedad , Regulación hacia Abajo , Células Epiteliales/inmunología , Femenino , Humanos , Integrina beta4/sangre , Pulmón/inmunología , Pulmón/fisiopatología , Masculino , Ratones Noqueados , Persona de Mediana Edad , Regiones Promotoras Genéticas
17.
Arch Biochem Biophys ; 680: 108225, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31838119

RESUMEN

An increase in intracellular Cl- concentration ([Cl-]i) may be a general response of airway epithelial cells to various stimuli and may participate in some basic cellular functions. However, whether the basic functional activities of cells, such as proliferation and wound healing, are related to Cl- activities remains unclear. This study aimed to investigate the effects and potential mechanisms of [Cl-]i on the proliferation and wound healing ability of airway epithelial BEAS-2B cells. BEAS-2B cells were treated with four Cl- channel inhibitors (T16Ainh-A01, CFTRinh-172, CaCCinh-A01, and IAA-94), and the Cl- fluorescence probe N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide was used. Results showed that all Cl- channel inhibitors could increase [Cl-]i in BEAS-2B cells. The increased [Cl-]i induced by Cl- channel inhibitors or clamping [Cl-]i at high levels enhanced the phosphorylation of focal adhesion kinase (FAK) and subsequently promoted the proliferation and wound healing ability of BEAS-2B cells. By contrast, the FAK inhibitor PF573228 abrogated these effects induced by the increased [Cl-]i. FAK also activated the PI3K/AKT signaling pathway. In conclusion, increased [Cl-]i promotes the proliferation and wound healing ability of BEAS-2B cells by activating FAK to activate the PI3K/AKT signaling pathway. Intracellular Cl- may act as a signaling molecule to regulate the proliferation and wound healing ability of airway epithelial cells.


Asunto(s)
Proliferación Celular , Cloruros/metabolismo , Células Epiteliales/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Línea Celular , Activación Enzimática , Células Epiteliales/citología , Humanos , Mucosa Respiratoria/citología , Mucosa Respiratoria/metabolismo , Transducción de Señal , Cicatrización de Heridas
18.
Clin Sci (Lond) ; 134(13): 1735-1749, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32608482

RESUMEN

Airway epithelial cells (AECs) play a key role in asthma susceptibility and severity. Integrin ß4 (ITGB4) is a structural adhesion molecule that is down-regulated in the airway epithelium of asthma patients. Although a few studies hint toward the role of ITGB4 in asthmatic inflammation pathogenesis, their specific resultant effects remain unexplored. In the present study, we determined the role of ITGB4 of AECs in the regulation of Th2 response and identified the underpinning molecular mechanisms. We found that ITGB4 deficiency led to exaggerated lung inflammation and AHR with higher production of CCL17 in house dust mite (HDM)-treated mice. ITGB4 regulated CCL17 production in AECs through EGFR, ERK and NF-κB pathways. EFGR-antagonist treatment or the neutralization of CCL17 both inhibited exaggerated pathological marks in HDM-challenged ITGB4-deficient mice. Together, these results demonstrated the involvement of ITGB4 deficiency in the development of Th2 responses of allergic asthma by down-regulation of EGFR and CCL17 pathway in AECs.


Asunto(s)
Asma/inmunología , Quimiocina CCL17/inmunología , Células Epiteliales/inmunología , Integrina beta4/inmunología , Pulmón/inmunología , Animales , Asma/genética , Quimiocina CCL17/genética , Receptores ErbB/genética , Receptores ErbB/inmunología , Femenino , Humanos , Integrina beta4/genética , Masculino , Ratones , Ratones Noqueados , Células Th2/inmunología
19.
FASEB J ; 33(12): 14159-14170, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31652414

RESUMEN

8-Oxoguanine DNA glycosylase-1 (OGG1)-initiated base excision repair pathway is primarily responsible for 7, 8-dihydro-8-oxoguanine (8-oxoG) removal from DNA. Recent studies, however, have shown that 8-oxoG in gene regulatory elements may serve as an epigenetic mark, and OGG1 has distinct functions in modulating gene expression. Genome-wide mapping of oxidative stress-induced OGG1 enrichment within introns was documented, but its significance has not yet been fully characterized. Here, we explored whether OGG1 recruited to intron 1 of tissue inhibitor of metalloproteinase-1 (TIMP1) gene and modulated its expression. Using chromatin and DNA:RNA hybrid immunoprecipitation assays, we report recruitment of OGG1 to the DNA:RNA hybrid in intron 1, where it increases nascent RNA but lowers mRNA levels in O3-exposed human airway epithelial cells and mouse lungs. Decrease in TIMP1 expression is alleviated by antioxidant administration, small interfering RNA depletion, or inhibition of OGG1 binding to its genomic substrate. In vitro studies revealed direct interaction between OGG1 and 8-oxoG containing DNA:RNA hybrid, without excision of its substrate. Inhibition of OGG1 binding to DNA:RNA hybrid translated into an increase in TIMP1 expression and a decrease in oxidant-induced lung inflammatory responses as well as airway remodeling. Data documented here reveal a novel molecular link between OGG1 at damaged sites and transcription dynamics that may contribute to oxidative stress-induced cellular and tissue responses.-Pan, L., Wang, H., Luo, J., Zeng, J., Pi, J., Liu, H., Liu, C., Ba, X., Qu, X., Xiang, Y., Boldogh, I., Qin, X. Epigenetic regulation of TIMP1 expression by 8-oxoguanine DNA glycosylase-1 binding to DNA:RNA hybrid.


Asunto(s)
ADN Glicosilasas/metabolismo , Epigénesis Genética , Células Epiteliales/metabolismo , Ozono/farmacología , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Animales , Bronquios , Línea Celular , ADN Glicosilasas/genética , Sondas de ADN , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inmunoprecipitación , Masculino , Ratones , Ratones Endogámicos C57BL , Mucosa Respiratoria/citología , Inhibidor Tisular de Metaloproteinasa-1/genética
20.
Respir Res ; 20(1): 243, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31684967

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a chronic lung inflammatory disease which has a close relationship with aging. Genome-wide analysis reveals that DNA methylation markers vary obviously with age. DNA methylation variations in peripheral blood have the potential to be biomarkers for COPD. However, the specific DNA methylation of aging-related genes in the peripheral blood of COPD patients remains largely unknown. METHODS: Firstly, 9 aging-related differentially expressed genes (DEGs) in COPD patients were screened out from the 25 aging-related genes profile through a comprehensive screening strategy. Secondly, qPCR and multiple targeted bisulfite enrichment sequencing (MethTarget) were used to detect the mRNA level and DNA methylation level of the 9 differentially expressed genes in the peripheral blood of 60 control subjects and 45 COPD patients. The candidate functional CpG sites were selected on the basis of the regulation ability of the target gene expression. Thirdly, the correlation was evaluated between the DNA methylation level of the key CpG sites and the clinical parameters of COPD patients, including forced expiratory volume in one second (FEV1), forced expiratory volume in one second as percentage of predicted volume (FEV1%), forced expiratory volume/ forced vital capacity (FEV/FVC), modified British medical research council (mMRC) score, acute exacerbation frequency and the situation of frequent of acute aggravation (CAT) score. Lastly, differentially methylated CpG sites unrelated to smoking were also determined in COPD patients. RESULTS: Of the 9 differentially expressed aging-related genes, the mRNA expression of 8 genes were detected to be significantly down-regulated in COPD group, compared with control group. Meanwhile, the methylated level of all aging-related genes was changed in COPD group containing 219 COPD-related CpG sites in total. Notably, 27 CpG sites of FOXO3 gene showed a lower False Discovery Rate (FDR) and higher methylation difference values. Also, some variable DNA methylation is associated with the severity of COPD. Additionally, of the 219 COPD-related CpG sites, 147 CpG sites were not related to smoking. CONCLUSION: These results identified that the mRNA expression and DNA methylation level of aging-related genes were changed in male COPD patients, which provides a molecular link between aging and COPD. The identified CpG markers are associated with the severity of COPD and provide new insights into the prediction and identification of COPD.


Asunto(s)
Envejecimiento/genética , Metilación de ADN , Enfermedad Pulmonar Obstructiva Crónica/genética , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Envejecimiento/sangre , Estudios de Casos y Controles , Islas de CpG , Bases de Datos Genéticas , Femenino , Volumen Espiratorio Forzado , Factores de Transcripción Forkhead/genética , Predisposición Genética a la Enfermedad , Humanos , Pulmón/fisiopatología , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/sangre , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Medición de Riesgo , Factores de Riesgo , Índice de Severidad de la Enfermedad , Factores Sexuales , Transcriptoma , Capacidad Vital , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA