Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Biomacromolecules ; 25(3): 2052-2064, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38426456

RESUMEN

Conventional embolists disreputably tend to recanalization arising from the low filling ratio due to their rigidity or instability. As a result, intelligent hydrogels with a tunable modulus may meaningfully improve the therapeutic efficacy. Herein, an injectable composite double-network (CDN) hydrogel with high shear responsibility was prepared as a liquid embolic agent by cross-linking poly(vinyl alcohol) (PVA) and carboxymethyl chitosan (CMC) via dynamic covalent bonding of borate ester and benzoic-imine. A two-dimensional nanosheet, i.e., layered double hydroxide (LDH), was incorporated into the network through physical interactions which led to serious reduction of yield stress for the injection of the hydrogel and the capacity for loading therapeutic agents like indocyanine green (ICG) and doxorubicin (DOX) for the functions of photothermal therapy (PTT) and chemotherapy. The CDN hydrogel could thus be transported through a thin catheter and further in situ strengthened under physiological conditions, like in blood, by secondarily cross-linking with phosphate ions for longer degradation duration and better mechanical property. These characteristics met the requirements of arterial interventional embolization, which was demonstrated by renal embolism operation on rabbits, and meanwhile favored the inhibition of subcutaneous tumor growth on an animal model. Therefore, this work makes a breakthrough in the case of largely reducing the embolism risks, thus affording a novel generation for interventional embolization.


Asunto(s)
Embolia , Neoplasias , Animales , Conejos , Hidrogeles/farmacología , Doxorrubicina/farmacología , Inyecciones
2.
Angew Chem Int Ed Engl ; 63(9): e202317251, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38189597

RESUMEN

The construction of variable structured multi-protein nano-assemblies is of great interest for the development of protein-based therapeutic systems. This study showcases the synthesis of polymer-protein assemblies with tunable structure like single- and multi-layer polymer-crosslinked protein vesicles, Janus protein vesicles and other hierarchical-structured assemblies by utilizing a dynamic template-assistant intermittent-assembly approach. The generalization of the methodology helps the protein assemblies to gain notable functional complexity. And we demonstrate compelling evidence highlighting the substantial impact of the topological morphology of protein nanoaggregates on their cellular uptake capacity.


Asunto(s)
Nanoestructuras , Polímeros , Polímeros/química , Nanoestructuras/química
3.
Biomacromolecules ; 24(5): 2075-2086, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37018617

RESUMEN

Development of bioactive bone and joint implants that offer superior mechanical properties to facilitate personalized surgical procedures remains challenging in the field of biomedical materials. As for the hydrogel, mechanical property and processability are major obstructions hampering its application as load-bearing scaffolds in orthopedics. Herein, we constructed implantable composite hydrogels with appealing processability and ultrahigh stiffness. Central to our design is the incorporation of a thixotropic composite network into an elastic polymer network via dynamic interactions to synthesize a percolation-structured double-network (DN) hydrogel with plasticity, followed by in situ strengthening and self-strengthening mechanisms for fostering the DN structure to the cojoined-network structure and subsequently mineralized-composite-network structure to harvest excellent stiffness. The ultrastiff hydrogel is shapeable and can reach a compressive modulus of 80-200 MPa together with a fracture energy of 6-10 MJ/m3, comparable to the mechanical performance of cancellous bone. Moreover, the hydrogel is cytocompatible, osteogenic, and showed almost no volume shrinkage within 28 days in simulated body fluid or culture medium. Such characteristics enabled the utility of a hydrogel in the reduction and stabilization of periarticular fracture treatment on a distal femoral AO/OTA B1 fracture rabbit model and successfully avoided the recollapse of the articular surface.


Asunto(s)
Materiales Biocompatibles , Hidrogeles , Animales , Conejos , Hidrogeles/química , Materiales Biocompatibles/química , Polímeros/química , Huesos , Osteogénesis
4.
Eur Neurol ; 86(2): 85-94, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36617418

RESUMEN

BACKGROUND: The no-reflow phenomenon refers to a failure to restore normal cerebral microcirculation despite brain large artery recanalization after acute ischemic stroke, which was observed over 50 years ago. SUMMARY: Different mechanisms contributing to no-reflow extend across the endovascular, vascular wall, and extravascular factors. There are some clinical tools to evaluate cerebral microvascular hemodynamics and represent biomarkers of the no-reflow phenomenon. As substantial experimental and clinical data showed that clinical outcome was better correlated with reperfusion status rather than recanalization in patients with ischemic stroke, how to address the no-reflow phenomenon is critical. But effective treatments for restoring cerebral microcirculation have not been well established until now, so there is an urgent need for novel therapeutic perspectives to improve outcomes after recanalization therapies. CONCLUSION: Here, we review the occurrence of the no-reflow phenomenon after ischemic stroke and discuss its impact, detection method, and therapeutic strategies on the course of ischemic stroke, from basic science to clinical findings.


Asunto(s)
Accidente Cerebrovascular Isquémico , Fenómeno de no Reflujo , Accidente Cerebrovascular , Humanos , Microcirculación , Fenómeno de no Reflujo/terapia , Encéfalo , Resultado del Tratamiento , Accidente Cerebrovascular/tratamiento farmacológico
5.
Langmuir ; 38(37): 11406-11413, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36084177

RESUMEN

Cross-linked epoxy resin (EP) single-hole Janus hollow spheres are prepared by cross-linking induced phase separation within an emulsion droplet and selective modification. The droplet is composed of an EP oligomer, toluene, and hexadecane. 2-Ethyl-4-methylimidazole is used as the cross-linker added to the aqueous phase. During the cross-linking, hexadecane forms an eccentric core in the cross-linked EP sphere. A single hole forms across the shell after dissolving the solvents, and a single-hole hollow sphere is achieved. The hole and cavity size are controlled by adjusting the solvent content and cross-linker concentration. Furthermore, frozen wax is used as the core material instead of hexadecane to effectively protect the sphere's interior surface. Selective modification of the exterior and interior surfaces is thus permitted. As an example, a responsive single-hole Janus hollow sphere is prepared by the favorable growth of a silica-polyoxyethylene composite layer onto the exterior surface and a selective grafting of poly(2-diethylaminoethyl methacrylate) (PDEAEMA) by atom-transfer radical polymerization (ATRP) onto the interior. The Janus sphere is water-dispersible and controllably captures and releases oil from the aqueous environment as triggered by the pH value.

6.
Macromol Rapid Commun ; 43(17): e2200157, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35503683

RESUMEN

For double network (DN) hydrogels, their performance can be tuned by adjusting the interaction between their two networks. A novel DN hydrogel toughening approach is proposed by employing Janus nanoparticles (JNs) as crosslinkers to gain a conjoined-network hydrogel. First, a kind of JNs modified by amino groups and quaternary ammonium salt is synthesized, named R3 N+ -JN-NH2 . The DN hydrogel is fabricated based on ionic coordination between calcium chloride (CaCl2 ) and sodium alginate (Alg), as well as covalent (benzoic imine) between glycol chitosan (GC) and benzaldehyde-capped poly(ethylene oxide) (BzCHO-PEO-BzCHO). Based on the same covalent and ionic dynamic crosslinking mechanism, the added R3 N+ -JN-NH2 interacts with two networks to promote crosslinking to form a dually crosslinked structure. The R3 N+ -JN-NH2 effectively provides more energy dissipation, and the hydrogel with conjoined networks shows better compression resistance.


Asunto(s)
Hidrogeles , Nanopartículas Multifuncionales , Alginatos/química , Hidrogeles/química , Polietilenglicoles/química
7.
Biomacromolecules ; 18(7): 2128-2138, 2017 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-28557440

RESUMEN

Herein we present a unique method of using dynamic cross-links, which are dynamic covalent bonding and ionic interaction, for the construction of injectable double-network (DN) hydrogels, with the objective of cell delivery for cartilage repair. Glycol chitosan and dibenzaldhyde capped poly(ethylene oxide) formed the first network, while calcium alginate formed the second one, and in the resultant DN hydrogel, either of the networks could be selectively removed. The moduli of the DN hydrogel were significantly improved compared to that of the parent single-network hydrogels and were tunable by changing the chemical components. In situ 3D cell encapsulation could be easily performed by mixing cell suspension to the polymer solutions and transferred through a syringe needle before sol-gel transition. Cell proliferation and mediated differentiation of mouse chondrogenic cells were achieved in the DN hydrogel extracellular matrix.


Asunto(s)
Trasplante de Células/métodos , Células Inmovilizadas/trasplante , Condrogénesis , Hidrogeles , Polietilenglicoles , Animales , Línea Celular , Células Inmovilizadas/metabolismo , Hidrogeles/síntesis química , Hidrogeles/química , Hidrogeles/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Polietilenglicoles/química , Polietilenglicoles/farmacología
8.
J Mater Sci Mater Med ; 28(1): 10, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27915402

RESUMEN

Beyond promoting hard tissue repairing, bioactive glasses (BGs) have also been proved to be beneficial for wound healing. Nano-scale BGs prepared by sol-gel method were found to have a better performance as they have a larger specific surface area. In this work, bioactive nanoparticles (nBPs) with mean diameter of 12 nm (BP-12) instead of conventional BGs were mixed with gelatin to form an easy-to-use hydrogel as a dressing for skin wound. It was found that the composite of BP-12 and gelatin could form a hydrogel (BP-12/Gel) under 25 °C, which showed pronounced thixotropy at a practically accessible shear rate, therefore become easy to be used for wound cover. In vitro, the composite hydrogel of BP-12 and gelatin had good biocompatibility with the fibroblast cells. In vivo, rapid cutaneous-tissue regeneration and tissue-structure formation within 7 days was observed in the wound-healing experiment performed in rats. This hydrogel is thus a promising easy-to-use wound dressing material.


Asunto(s)
Vendajes , Fibroblastos/citología , Gelatina/química , Hidrogeles/química , Nanopartículas/química , Piel/lesiones , Células 3T3 , Animales , Materiales Biocompatibles/química , Biopsia , Línea Celular , Femenino , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica de Transmisión , Ratas , Regeneración , Reología , Propiedades de Superficie , Temperatura , Viscosidad , Cicatrización de Heridas
9.
Biomater Sci ; 12(3): 748-762, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38131275

RESUMEN

The development of cancer treatment is of great importance, especially in the early stage. In this work, we synthesized a pH-sensitive amphiphilic ruthenium complex containing two alkyl chains and two PEG chains, which was utilized as an oxygen sensitive fluorescent probe for co-assembly with lipids to harvest a liposomal delivery system (RuPC) for the encapsulation of a photothermal agent indocyanine green (ICG). The resultant ICG encapsulated liposome (RuPC@ICG) enabled the delivery of ICG into cells via a membrane fusion pathway, by which the ruthenium complex was localized in the cell membrane for better detection of the extracellular oxygen concentration. Such characteristics allowed ratiometric imaging to distinguish the tumour location from normal tissues just 3 days after cancer cells were implanted, by monitoring the hypoxia condition and tracing the metabolism. Moreover, the pH sensitivity of the liposomes favoured cell uptake, and improved the anti-tumour efficiency of the formulation in vivo under NIR irradiation. Assuming liposomal systems have fewer safety issues, our work not only provides a facile method for the construction of a theragnostic system by combining phototherapy with photoluminescence imaging, but hopefully paves the way for clinical translation from bench to bedside.


Asunto(s)
Hipertermia Inducida , Neoplasias , Rutenio , Humanos , Liposomas , Terapia Fototérmica , Oxígeno , Hipertermia Inducida/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Verde de Indocianina , Concentración de Iones de Hidrógeno , Línea Celular Tumoral
10.
Neurotherapeutics ; : e00387, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38918128

RESUMEN

The precise oxygen content thresholds of ischemic deep parenchymal (OCIDP) and that in cortical microcirculation (OCCM), which leads to ischemic penumbra converting into the infarcted core, remain uncertain. This study employed an invasive fiber-optic oxygen meter and a newly developed oxygen-responsive probe called RuA3-Cy5-rtPA (RC-rtPA) based on recombinant tissue-type plasminogen activator (rtPA) to examine the oxygen content thresholds. A mouse model of middle cerebral artery occlusion was generated and animals were randomly divided into a sham, 24-h reperfusion after 3-h ischemia (IR 3-h), and IR 6-h groups, all of which were sacrificed following reperfusion. Stroke severity was evaluated based on the infarction area, neurological symptoms, microcirculation perfusion, and microemboli in microcirculation. OCIDP was characterized based on its extent and distribution, whereas OCCM was measured using RC-rtPA. During ischemia, stroke severity escalation manifested as increasing infarction area, severe neurologic symptoms, and poorer microcirculation perfusion with more microthrombi depositions. OCIDP presented rapid decline following artery occlusion along with a gradual increase in the hypoxic area. Within 3 â€‹h following ischemia induction, the ischemic tissue that experienced hypoxia could be rescued, and this reversibility would disappear after 6 â€‹h. Within 6 â€‹h, OCCM continued to decrease. A significant decrease in oxygen content in cortical venules and cortical parenchyma was observed. These findings assist in establishing the extent of the ischemic penumbra at the microcirculation level and offer a foundation for assessing the ischemic penumbra that could respond positively to reperfusion therapy beyond the typical time window.

11.
Langmuir ; 29(13): 4214-24, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23473107

RESUMEN

There are numerous pharmaceutical, food, and consumer product applications requiring the incorporation of hydrophobic solutes within aqueous media. Often amphiphiles and/or polymers are used to produce encapsulating nanostructures. Because the encapsulation efficiencies of these nanostructures directly impact on the process or product, it is often desirable to optimize this parameter. To produce these advanced functional materials, we hypothesized that an amphiphile with a claw shape would favor polymer aggregation into nanoparticles and hydrophobic compound encapsulation. Claw amphiphiles were prepared by attaching one end of comb-shaped chitosan amphiphile chains [N,N,N-trimethyl, N,N-dimethyl, N-monomethyl, N-palmitoyl, N-acetyl, 6-O-glycol chitosan (GCPQA)] to a central dendrimer core [generation 3 diaminobutane poly(propylenimine) dendrimer (DAB)] to give DAB-GCPQA. The linear chitosan amphiphile (GCPQA) forms the digits of the claw. These claw amphiphiles were very stable and had a high encapsulating efficiency. DAB-GCPQAs (Mn = 30 and 70 kDa) had extremely low critical micelle concentrations [CMCs = 0.43 µg mL(-1) (13 nM) and 0.093 µg mL(-1) (0.9 nM), respectively], and their CMCs were lower than that of linear GCPQA [Mn = 14 kDa, CMC = 0.77 µg mL(-1) (38 nM)]. The claw amphiphile CMCs decreased linearly with the number of digits (r(2) = 0.98), and drug encapsulation (hydrophobic drug propofol) in 4 mg mL(-1) dispersions of the amphiphiles increased linearly (r(2) = 0.94) with the number of digits. DAB-GCPQA70 (4 mg mL(-1), 0.058 mM) encapsulated propofol (7.3 mg mL(-1), 40 mM). Finally, despite their stability, claw amphiphile nanoparticles are able to release the encapsulated drug in vivo, as shown with the claw amphiphile-propofol formulations in a murine loss of righting reflex model.


Asunto(s)
Dendrímeros/química , Composición de Medicamentos , Nanopartículas/química , Tensoactivos/química , Dendrímeros/síntesis química , Interacciones Hidrofóbicas e Hidrofílicas , Estructura Molecular , Tensoactivos/síntesis química
12.
Zhonghua Nan Ke Xue ; 19(9): 771-5, 2013 Sep.
Artículo en Zh | MEDLINE | ID: mdl-24386851

RESUMEN

OBJECTIVE: To overcome the deficiency in the current therapies for erectile dysfunction (ED), we designed and synthesized a novel high-efficiency polymer/gene compound drug controlled release system and discussed the feasibility of pH and temperature dually sensitive injectable hydrogel in ED gene therapy. METHODS: We synthesized optimal siRNA gene nanoparticles by characterizing the zeta potential of polylysine (PLL)/siRNA gene compounds, and established a pH and temperature dually sensitive injectable gene compound drug controlled release system via Schiffs reaction between glycol chitosan (GC) and benzaldehyde capped OHC-PEO-PPO-PEO-CHO. Then we demonstrated the sustained release of the system at different temperatures. RESULTS: When the mass ratio of PLL to siRNA was 20:1, the zeta potential of the PLL/siRNA gene compound reached the peak (+23.5 mV) and the siRNA was encapsulated by PLL in the maximal degree. GC and OHC-PEO-PPO-PEO-CHO was crosslinked via benzoicimine reaction when environmental pH was changed from 5.5 to 7.4. The reslease of the siRNA encapsulated in this system kept at a low rate at 37 degrees C, significantly enhanced with the increase of the temperature to 60 degrees C, rising to (122.5 +/- 5.3) microg at 1 000 minutes as compared with (23.8 +/- 6.0) microg at 37 degrees C (P < 0.05). CONCLUSION: The polymer/gene compound drug controlled release system was successfully synthesized, which improved the stability and capacity of gene carriers and achieved siRNA release at different temperatures, promising to be a new approach to the gene therapy of ED.


Asunto(s)
Preparaciones de Acción Retardada/farmacología , Sistemas de Liberación de Medicamentos , Disfunción Eréctil/tratamiento farmacológico , Terapia Genética , Humanos , Masculino , Nanopartículas/química , Polilisina/química , Polímeros , ARN Interferente Pequeño/farmacología
13.
ACS Appl Mater Interfaces ; 15(6): 7821-7832, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36734883

RESUMEN

The regeneration of dental pulp tissue is very important, but difficult, in dentistry. The biocompatibility, water content, and viscoelastic properties of pulp-like tissue must be optimized to achieve the efficient transfer of metabolites and nutrients, a suitable degradation rate, distribution of encapsulated cells, injectability, and gelation in situ under physiological conditions. As promising materials for pulp regeneration, hydrogel scaffolds have been produced to simulate the extracellular matrix and transmit signaling molecules. It is imperative to develop hydrogels to effectively regenerate pulp tissue for clinical application. Here, two injectable double-network (DN) hydrogel-based three-dimensional (3D) cell culture systems were developed for regenerating dental pulp. The microstructure, mechanical property, rheology property, and degradation behavior of the injectable DN glycol chitosan-based hydrogels in a simulated root canal model were characterized and compared to a single-network (SN) glycol chitosan-based hydrogel. Human dental pulp stem cells (hDPSCs) were then encapsulated into the GC-based hydrogels for the regeneration of pulp tissue, and the biological performance was investigated both in vitro and in vivo. The results showed that the DN hydrogels had ideal injectability under physiological conditions due to the dynamic nature of the crosslinks. Besides, the DN hydrogels exhibited better mechanical properties and longer degradation duration than the corresponding SN hydrogel. As a 3D cell culture system, the characteristics of the DN hydrogel facilitated odontogenic differentiation and mineralization of hDPSCs in vitro. Further in vivo analysis confirmed that the chemical composition, matrix stiffness, and degradation rate of the DN hydrogel matched those of pulp-like fibrous connective tissue, which might be related to Smad3 activation. These findings demonstrate that DN glycol chitosan-based hydrogels are suitable for the regeneration of pulp tissue.


Asunto(s)
Pulpa Dental , Hidrogeles , Humanos , Hidrogeles/farmacología , Hidrogeles/química , Regeneración , Técnicas de Cultivo Tridimensional de Células , Diferenciación Celular
14.
J Mater Chem B ; 11(7): 1591-1598, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36723124

RESUMEN

The development of dual chemodynamic therapy and NO therapy can significantly improve the efficiency of cancer treatment. Therefore, designing a multifunctional agent to take full advantage of them and maximize their therapeutic effect remains a challenging goal. Herein, we have developed a novel LDHzyme by the confinement of L-arginine (L-Arg) on the surface of Mn-LDH nanosheets. The LDHzyme can exhibit multiple enzyme-like catalytic activities, including peroxidase (POD), oxidase (OXD), and nitric oxide synthase (iNOS). Based on these enzyme-mimicking properties, LDHzyme possesses significant catalytic efficiency with a high maximum velocity of 1.41 × 10-6 M s-1, which is higher than the majority of other nanozymes. In addition, this LDHzyme can exhibit outstanding NO-enhanced lethality of ROS and further improve its efficacy. The therapeutic effect of LDHzyme has been verified to significantly inhibit tumor growth in HeLa xenograft Balb/c nude mice models, as demonstrated in both in vitro and in vivo models, revealing the promising prospects of NO-enhanced multi-enzyme dynamic therapy (MDT). These results open up an opportunity to enable the utilization of an LDH-based nanozyme as a curative nanosystem to inhibit tumor growth.


Asunto(s)
Neoplasias , Ratones , Animales , Humanos , Ratones Desnudos , Peroxidasa , Oxidorreductasas , Catálisis
15.
Front Pharmacol ; 14: 1084564, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36909178

RESUMEN

Several studies have demonstrated the protective effect of dl-3-n-Butylphthalide (NBP) against cerebral ischemia, which may be related to the attenuation of mitochondrial dysfunction. However, the specific mechanism and targets of NBP in cerebral ischemia/reperfusion remains unclear. In this study, we used a chemical proteomics approach to search for targets of NBP and identified cytochrome C oxidase 7c (Cox7c) as a key interacting target of NBP. Our findings indicated that NBP inhibits mitochondrial apoptosis and reactive oxygen species (ROS) release and increases ATP production through upregulation of Cox7c. Subsequently, mitochondrial respiratory capacity was improved and the HIF-1α/VEGF pathway was upregulated, which contributed to the maintenance of mitochondrial membrane potential and blood brain barrier integrity and promoting angiogenesis. Therefore, our findings provided a novel insight into the mechanisms underlying the neuroprotective effects of NBP, and also proposed for the first time that Cox7c exerts a critical role by protecting mitochondrial function.

16.
Langmuir ; 28(33): 11988-96, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22845809

RESUMEN

Herein we report a coassembly method toward the preparation of pH-sensitive polymeric vesicular aggregates, using comb-shaped amphiphilic polymers, i.e., cholate grafted poly(L-lysine) (PLL-CA), with an amphiphilic poly(ethylene glycol)-doxorubicin conjugate (PEG-DOX). Because the drug conjugate includes a low-pH labile bond, i.e., benzoic imine, the permeability of the coassembled polymeric vesicles can be tuned by changing either the PLL-CA/PEG-DOX weight ratio or the environmental pH from 7.4 to 6.5. Furthermore, at lower pH values such as 5.0, the vesicles destabilize. The pH sensitivity leads to enhanced uptake of the vesicles by cancer cells (MCF-7) under a condition close to the extracellular environment of solid tumor (pH = 6.5) and subsequent efficient endosome escape after the endocytosis.


Asunto(s)
Antineoplásicos/química , Colatos/química , Doxorrubicina/química , Portadores de Fármacos/química , Interacciones Hidrofóbicas e Hidrofílicas , Polietilenglicoles/química , Polilisina/química , Antineoplásicos/metabolismo , Transporte Biológico , Doxorrubicina/metabolismo , Portadores de Fármacos/síntesis química , Humanos , Concentración de Iones de Hidrógeno , Espacio Intracelular/metabolismo , Células MCF-7 , Permeabilidad
17.
Front Bioeng Biotechnol ; 10: 972837, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091444

RESUMEN

Phototherapy and multimodal synergistic phototherapy (including synergistic photothermal and photodynamic therapy as well as combined phototherapy and other therapies) are promising to achieve accurate diagnosis and efficient treatment for tumor, providing a novel opportunity to overcome cancer. Notably, various nanomaterials have made significant contributions to phototherapy through both improving therapeutic efficiency and reducing side effects. The most key factor affecting the performance of phototherapeutic nanomaterials is their microstructure which in principle determines their physicochemical properties and the resulting phototherapeutic efficiency. Vacancy defects ubiquitously existing in phototherapeutic nanomaterials have a great influence on their microstructure, and constructing and regulating vacancy defect in phototherapeutic nanomaterials is an essential and effective strategy for modulating their microstructure and improving their phototherapeutic efficacy. Thus, this inspires growing research interest in vacancy engineering strategies and vacancy-engineered nanomaterials for phototherapy. In this review, we summarize the understanding, construction, and application of vacancy defects in phototherapeutic nanomaterials. Starting from the perspective of defect chemistry and engineering, we also review the types, structural features, and properties of vacancy defects in phototherapeutic nanomaterials. Finally, we focus on the representative vacancy defective nanomaterials recently developed through vacancy engineering for phototherapy, and discuss the significant influence and role of vacancy defects on phototherapy and multimodal synergistic phototherapy. Therefore, we sincerely hope that this review can provide a profound understanding and inspiration for the design of advanced phototherapeutic nanomaterials, and significantly promote the development of the efficient therapies against tumor.

18.
ACS Biomater Sci Eng ; 8(2): 540-550, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35107009

RESUMEN

Photothermal therapy (PTT) working in the second near-infrared (NIR-II) region has aroused a huge interest due to its potential application in terms of clinical cancer treatment. However, owing to the lack of photothermal nanoagents with high photothermal conversion efficiency, NIR-II-driven PTT still suffers from poor efficiency and subsequent cancer recurrence. In this work, we show a new and highly efficient preparation approach for NIR-II photothermal nanoagents and tailor ultrathin layered double hydroxide (LDH)-supported Ag@Ag2O core-shell nanoparticles (Ag@Ag2O/LDHs-U), vastly improving NIR-II photothermal performance. A combination study (high-resolution transmission electron microscopy (HRTEM), extended X-ray absorption fine structure spectroscopy (EXAFS), and X-ray photoelectron spectroscopy (XPS)) verifies that ultrafine Ag@Ag2O core-shell nanoparticles (∼3.8 nm) are highly dispersed and firmly immobilized within ultrathin LDH nanosheets, and their Ag2O shell possesses abundant vacancy-type defects. These unique Ag@Ag2O/LDHs-U display an impressive photothermal conversion efficiency as high as 76.9% at 1064 nm. Such an excellent photothermal performance is likely attributed to the enhanced localized surface plasmon resonance (LSPR) coupling effect between Ag and Ag2O and the reduced band gap caused by vacancy-type defects in the Ag2O shell. Meanwhile, Ag@Ag2O/LDHs-U also show prominent photothermal stability, due to the unique supported core-shell nanostructure. Moreover, both in vitro and in vivo studies further confirm that Ag@Ag2O/LDHs-U possess good biocompatible properties and outstanding PTT therapeutic efficacy in the NIR-II region. This research shows a new strategy in the rational design and preparation of an efficient photothermal agent, which is helpful to achieve more accurate and effective cancer theranostics.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Nanopartículas/uso terapéutico , Neoplasias/tratamiento farmacológico , Terapia Fototérmica , Nanomedicina Teranóstica/métodos
19.
J Microencapsul ; 28(8): 752-62, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21967462

RESUMEN

The physicochemical compatibility between amphiphilic polymers and hydrophobic drugs has been recognized as an important issue for improving the drug solubilisation in polymeric micelle formulations. In this work, poly-L-lysine (PLL) grafted by cholate pendants as the only hydrophobic moiety were synthesized in order to facilitate the solubilisation of sterol drugs. Results showed that micelles formed by cholate grafted PLL encapsulated significantly higher level of prednisolone and estradiol than palmitoylated PLL micelles, whereas the solubilisation capacity of non-sterol drug (griseofulvin) is inefficient for both polymers. This suggests that higher drug-polymer incorporation can be achieved by the inclusion of hydrophobic moieties with similar architecture as the drugs, i.e. 'drug-like' functional groups, which will be useful for the future design of colloidal systems for the encapsulation of specific drug.


Asunto(s)
Colatos/química , Portadores de Fármacos/química , Micelas , Polilisina/química , Esteroles/administración & dosificación , Antineoplásicos Hormonales/administración & dosificación , Antineoplásicos Hormonales/química , Estradiol/administración & dosificación , Estradiol/química , Estrógenos/administración & dosificación , Estrógenos/química , Prednisolona/administración & dosificación , Prednisolona/química , Solubilidad , Esteroles/química
20.
Transl Stroke Res ; 12(5): 844-857, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33067776

RESUMEN

Tissue reperfusion is a serious therapeutic strategy of ischemic stroke in addition to recanalization. In this work, we aimed to establish new urokinase-based therapeutics in order to dissolve large vessel thrombus together with microthrombi for stroke implications. Formulations consisted of free urokinase (UK), polyethylene glycol-crosslinked urokinase nanogel (PEG-UK), and a 1:1 mixture of UK and PEG-UK (PEG-UK+UK) were tested both in vitro and in vivo. In vitro experiments confirmed the pH-dependent release of PEG-UK in the PEG-UK+UK formulation. It was activated at pH 6.50, an environmental pH in the infarct brain tissue, owing to the dynamic crosslink property of PEG-UK. In vivo tests on a thromboembolic stroke rat model showed that the formulations containing UK, i.e., free UK and PEG-UK+UK, demonstrated better neurological scores and smaller infarction volumes within the time window, in which the PEG-UK+UK formulation relatively performed better. On the other hand, the formulations containing PEG-UK, i.e., PEG-UK and PEG-UK+UK, gained sufficient thrombolytic efficiency beyond the time window. Further investigation on the mechanism revealed that PEG-UK could reduce microthrombus in distal microcirculation, and its destructive effect was also less than that of free UK. The PEG-UK+UK formulation actually provided a "dual targeting" delivery of UK to both the large vessels and the microcirculation, which was beneficial to the treatment of cerebral ischemic stroke both within and beyond the therapeutic time window.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Isquemia Encefálica/complicaciones , Isquemia Encefálica/tratamiento farmacológico , Nanogeles , Polietilenglicoles/uso terapéutico , Ratas , Accidente Cerebrovascular/tratamiento farmacológico , Terapia Trombolítica , Activador de Plasminógeno de Tipo Uroquinasa/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA