Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(15): e2120003119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35377795

RESUMEN

Lymphatic filariasis is a vector-borne neglected tropical disease prioritized for global elimination. The filarial nematodes that cause the disease host a symbiotic bacterium, Wolbachia, which has been targeted using antibiotics, leading to cessation of parasite embryogenesis, waning of circulating larvae (microfilariae [mf]), and gradual cure of adult infection. One of the benefits of the anti-Wolbachia mode of action is that it avoids the rapid killing of mf, which can drive inflammatory adverse events. However, mf depleted of Wolbachia persist for several months in circulation, and thus patients treated with antibiotics are assumed to remain at risk for transmitting infections. Here, we show that Wolbachia-depleted mf rapidly lose the capacity to develop in the mosquito vector through a defect in exsheathment and inability to migrate through the gut wall. Transcriptomic and Western blotting analyses demonstrate that chitinase, an enzyme essential for mf exsheathment, is down-regulated in Wolbachia-depleted mf and correlates with their inability to exsheath and escape the mosquito midgut. Supplementation of in vitro cultures of Wolbachia-depleted mf with chitinase enzymes restores their ability to exsheath to a similar level to that observed in untreated mf. Our findings elucidate a mechanism of rapid transmission-blocking activity of filariasis after depletion of Wolbachia and adds to the broad range of biological processes of filarial nematodes that are dependent on Wolbachia symbiosis.


Asunto(s)
Antibacterianos , Quitinasas , Filariasis Linfática , Microfilarias , Wolbachia , Animales , Antibacterianos/farmacología , Quitinasas/genética , Filariasis Linfática/transmisión , Humanos , Microfilarias/enzimología , Microfilarias/crecimiento & desarrollo , Microfilarias/microbiología , Mosquitos Vectores/parasitología , Wolbachia/efectos de los fármacos , Wolbachia/genética
2.
Environ Microbiol ; 26(2): e16576, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38192175

RESUMEN

The mosquito microbiome is critical for host development and plays a major role in many aspects of mosquito biology. While the microbiome is commonly dominated by a small number of genera, there is considerable variation in composition among mosquito species, life stages, and geography. How the host controls and is affected by this variation is unclear. Using microbiome transplant experiments, we asked whether there were differences in transcriptional responses when mosquitoes of different species were used as microbiome donors. We used microbiomes from four different donor species spanning the phylogenetic breadth of the Culicidae, collected either from the laboratory or the field. We found that when recipients received a microbiome from a donor reared in the laboratory, the response was remarkably similar regardless of donor species. However, when the donor had been collected from the field, many more genes were differentially expressed. We also found that while the transplant procedure did have some effect on the host transcriptome, this is likely to have had a limited effect on mosquito fitness. Overall, our results highlight the possibility that variation in mosquito microbiome communities is associated with variability in host-microbiome interactions and further demonstrate the utility of the microbiome transplantation technique for investigating host-microbe interactions in mosquitoes.


Asunto(s)
Aedes , Microbiota , Animales , Aedes/genética , Transcriptoma/genética , Filogenia , Microbiota/genética
3.
PLoS Biol ; 19(1): e3000796, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33497373

RESUMEN

Tsetse transmit African trypanosomiasis, which is a disease fatal to both humans and animals. A vaccine to protect against this disease does not exist so transmission control relies on eliminating tsetse populations. Although neurotoxic insecticides are the gold standard for insect control, they negatively impact the environment and reduce populations of insect pollinator species. Here we present a promising, environment-friendly alternative to current insecticides that targets the insect tyrosine metabolism pathway. A bloodmeal contains high levels of tyrosine, which is toxic to haematophagous insects if it is not degraded and eliminated. RNA interference (RNAi) of either the first two enzymes in the tyrosine degradation pathway (tyrosine aminotransferase (TAT) and 4-hydroxyphenylpyruvate dioxygenase (HPPD)) was lethal to tsetse. Furthermore, nitisinone (NTBC), an FDA-approved tyrosine catabolism inhibitor, killed tsetse regardless if the drug was orally or topically applied. However, oral administration of NTBC to bumblebees did not affect their survival. Using a novel mathematical model, we show that NTBC could reduce the transmission of African trypanosomiasis in sub-Saharan Africa, thus accelerating current disease elimination programmes.


Asunto(s)
Ciclohexanonas/uso terapéutico , Reposicionamiento de Medicamentos , Control de Infecciones/métodos , Nitrobenzoatos/uso terapéutico , Tripanosomiasis Africana/prevención & control , 4-Hidroxifenilpiruvato Dioxigenasa/antagonistas & inhibidores , 4-Hidroxifenilpiruvato Dioxigenasa/metabolismo , Animales , Abejas/efectos de los fármacos , Femenino , Humanos , Insecticidas/uso terapéutico , Masculino , Metaboloma/efectos de los fármacos , Ratones , Modelos Teóricos , Enfermedades Desatendidas/prevención & control , Producción de Medicamentos sin Interés Comercial , Ratas , Ratas Wistar , Pruebas de Toxicidad , Tripanosomiasis Africana/transmisión , Moscas Tse-Tse/efectos de los fármacos , Moscas Tse-Tse/metabolismo , Tirosina/metabolismo
4.
Appl Environ Microbiol ; 88(18): e0106222, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36036577

RESUMEN

Cell fusing agent virus (CFAV) is an insect-specific flavivirus (ISF) found in Aedes aegypti mosquitoes. ISFs have demonstrated the ability to modulate the infection or transmission of arboviruses such as dengue, West Nile, and Zika viruses. It is thought that vertical transmission is the main route for ISF maintenance in nature. This has been observed with CFAV, but there is evidence of horizontal and venereal transmission in other ISFs. Understanding the route of transmission can inform strategies to spread ISFs to vector populations as a method of controlling pathogenic arboviruses. We crossed individually reared male and female mosquitoes from both a naturally occurring CFAV-positive Ae. aegypti colony and its negative counterpart to provide information on maternal, paternal, and horizontal transmission. RT-PCR was used to detect CFAV in individual female pupal exuviae and was 89% sensitive, but only 42% in male pupal exuviae. This is a possible way to screen individuals for infection without destroying the adults. Female-to-male horizontal transmission was not observed during this study. However, there was a 31% transmission rate from mating pairs of CFAV-positive males to negative female mosquitoes. Maternal vertical transmission was observed with a filial infection rate of 93%. The rate of paternal transmission was 85% when the female remained negative, 61% when the female acquired CFAV horizontally, and 76% overall. Maternal and paternal transmission of CFAV could allow the introduction of this virus into wild Ae. aegypti populations through male or female mosquito releases, and thus provides a potential strategy for ISF-derived arbovirus control. IMPORTANCE Insect-specific flaviviruses (ISFs), are a group of nonpathogenic flaviviruses that only infect insects. ISFs can have a high prevalence in mosquito populations, but their transmission routes are not well understood. The results of this study confirm maternal transmission of cell fusing agent virus (CFAV) and demonstrate that paternal transmission is also highly efficient. Horizontal transmission of CFAV was also observed, aided by evaluation of the pupal infection status before mating with an infected individual. This technique of detecting infection in discarded pupae exuviae has not been evaluated previously and will be a useful tool for others in the field of studying viral transmission in mosquitoes. Identifying these routes of transmission provides information about how CFAV could be maintained in wild populations of mosquitoes and can aid future studies focusing on interactions of CFAV with their hosts and other viruses that infect mosquitoes.


Asunto(s)
Aedes , Arbovirus , Flavivirus , Infección por el Virus Zika , Virus Zika , Animales , Femenino , Flavivirus/genética , Humanos , Masculino , Mosquitos Vectores , Virus Zika/genética
5.
Med Vet Entomol ; 36(3): 301-308, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35876244

RESUMEN

The endosymbiont Wolbachia can have major effects on the reproductive fitness, and vectorial capacity of host insects and may provide new avenues to control mosquito-borne pathogens. Anopheles gambiae s.l is the major vector of malaria in Africa but the use of Wolbachia in this species has been limited by challenges in establishing stable transinfected lines and uncertainty around native infections. High frequencies of infection of Wolbachia have been previously reported in An. gambiae collected from the Valle du Kou region of Burkina Faso in 2011 and 2014. Here, we re-evaluated the occurrence of Wolbachia in natural samples, collected from Valle du Kou over a 12-year time span, and in addition, expanded sampling to other sites in Burkina Faso. Our results showed that, in contrast to earlier reports, Wolbachia is present at an extremely low prevalence in natural population of An. gambiae. From 5341 samples analysed, only 29 were positive for Wolbachia by nested PCR representing 0.54% of prevalence. No positive samples were found with regular PCR. Phylogenetic analysis of 16S rRNA gene amplicons clustered across supergroup B, with some having similarity to sequences previously found in Anopheles from Burkina Faso. However, we cannot discount the possibility that the amplicon positive samples we detected were due to environmental contamination or were false positives. Regardless, the lack of a prominent native infection in An. gambiae s.l. is encouraging for applications utilizing Wolbachia transinfected mosquitoes for malaria control.


Asunto(s)
Anopheles , Malaria , Wolbachia , Animales , Anopheles/genética , Burkina Faso , Malaria/veterinaria , Mosquitos Vectores , Filogenia , ARN Ribosómico 16S/genética , Wolbachia/genética
6.
bioRxiv ; 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36993663

RESUMEN

The mosquito microbiome is critical for host development and plays a major role in many aspects of mosquito biology. While the microbiome is commonly dominated by a small number of genera, there is considerable variation in composition among mosquito species, life stages, and geography. How the host controls and is affected by this variation is unclear. Using microbiome transplant experiments, we asked whether there were differences in transcriptional responses when mosquitoes of different species were used as microbiome donors. We used microbiomes from four different donor species spanning the phylogenetic breadth of the Culicidae, collected either from the laboratory or field. We found that when recipients received a microbiome from a donor reared in the laboratory, the response was remarkably similar regardless of donor species. However, when the donor had been collected from the field, far more genes were differentially expressed. We also found that while the transplant procedure did have some effect on the host transcriptome, this is likely to have had a limited effect on mosquito fitness. Overall, our results highlight the possibility that variation in mosquito microbiome communities are associated with variability in host-microbiome interactions and further demonstrate the utility of the microbiome transplantation technique.

7.
PLoS Negl Trop Dis ; 17(9): e0011306, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37747880

RESUMEN

The composition of the microbiome is shaped by both environment and host in most organisms, but in the mosquito Aedes aegypti the role of the host in shaping the microbiome is poorly understood. Previously, we had shown that four lines of Ae. aegypti harbored different microbiomes when reared in the same insectary under identical conditions. To determine whether these lines differed from each other across time and in different environments, we characterized the microbiome of the same four lines of Ae. aegypti reared in the original insectary and at another institution. While it was clear that the environment influenced the microbiomes of these lines, we did still observe distinct differences in the microbiome between lines within each insectary. Clear differences were observed in alpha diversity, beta diversity, and abundance of specific bacterial taxa. To determine if the line specific differences in the microbiome were maintained across environments, pair-wise differential abundances of taxa was compared between insectaries. Lines were most similar to other lines from the same insectary than to the same line reared in a different insectary. Additionally, relatively few differentially abundant taxa identified between pairs of lines were shared across insectaries, indicating that line specific properties of the microbiome are not conserved across environments, or that there were distinct microbiota within each insectary. Overall, these results demonstrate that mosquito lines under the same environmental conditions have different microbiomes across microbially- diverse environments and host by microbe interactions affecting microbiome composition and abundance is dependent on environmentally available bacteria.


Asunto(s)
Aedes , Microbiota , Animales , Aedes/microbiología , Interacciones Microbianas , Bacterias/genética , Mosquitos Vectores , ARN Ribosómico 16S
8.
Curr Biol ; 31(11): 2310-2320.e5, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33857432

RESUMEN

Wolbachia, a widespread bacterium that can reduce pathogen transmission in mosquitoes, has recently been reported to be present in Anopheles (An.) species. In wild populations of the An. gambiae complex, the primary vectors of Plasmodium malaria in Sub-Saharan Africa, Wolbachia DNA sequences at low density and infection frequencies have been detected. As the majority of studies have used highly sensitive nested PCR as the only method of detection, more robust evidence is required to determine whether Wolbachia strains are established as endosymbionts in Anopheles species. Here, we describe high-density Wolbachia infections in geographically diverse populations of An. moucheti and An. demeilloni. Fluorescent in situ hybridization localized a heavy infection in the ovaries of An. moucheti, and maternal transmission was observed. Genome sequencing of both Wolbachia strains obtained genome depths and coverages comparable to those of other known infections. Notably, homologs of cytoplasmic incompatibility factor (cif) genes were present, indicating that these strains possess the capacity to induce the cytoplasmic incompatibility phenotype, which allows Wolbachia to spread through host populations. These strains should be further investigated as candidates for use in Wolbachia biocontrol strategies in Anopheles aiming to reduce the transmission of malaria.


Asunto(s)
Anopheles , Malaria , Wolbachia , Animales , Anopheles/genética , Hibridación Fluorescente in Situ , Herencia Materna , Mosquitos Vectores , Wolbachia/genética
9.
Sci Rep ; 10(1): 6672, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32317658

RESUMEN

Skin snip evaluation for onchocerciasis has insufficient sensitivity when skin microfilarial (mf) densities are low, such as following ivermectin treatment. Mf density is suitable for assessing microfilaricidal efficacy but only serves as an indirect indicator of macrofilaricidal activity. We assessed circulating nucleic acids from Onchocerca volvulus as an alternative to skin snips. We screened a plasma sample set of infected individuals followed up at four, 12 and 21 months after microfilaricidal (ivermectin, n = four), macrofilaricidal (doxycycline, n = nine), or combination treatment (n = five). Two parasite-derived miRNAs, cel-miR-71-5p and bma-lin-4, and O-150 repeat DNA were assessed. Highly abundant DNA repeat families identified in the O. volvulus genome were also evaluated. miRNAs were detected in two of 72 plasma samples (2.8%) and two of 47 samples (4.3%) with microfilaridermia using RT-qPCR. O-150 DNA was detected in eight (44.4%) baseline samples by qPCR and the number of positives declined post-treatment. One doxycycline-treated individual remained O-150 positive. However, only 11 (23.4%) samples with microfilaridermia were qPCR-positive. Analysis by qPCR showed novel DNA repeat families were comparatively less abundant than the O-150 repeat. Circulating parasite-derived nucleic acids are therefore insufficient as diagnostic tools or as biomarkers of treatment efficacy for O. volvulus.


Asunto(s)
Biomarcadores/sangre , MicroARN Circulante/sangre , ADN/sangre , Onchocerca volvulus/fisiología , Oncocercosis/tratamiento farmacológico , Oncocercosis/genética , Adulto , Animales , Humanos , Masculino , Oncocercosis/sangre , Parásitos/genética , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA