Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(14): e2313203121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38530891

RESUMEN

Consumers range from specialists that feed on few resources to generalists that feed on many. Generalism has the clear advantage of having more resources to exploit, but the costs that limit generalism are less clear. We explore two understudied costs of generalism in a generalist amoeba predator, Dictyostelium discoideum, feeding on naturally co-occurring bacterial prey. Both involve costs of combining prey that are suitable on their own. First, amoebas exhibit a reduction in growth rate when they switched to one species of prey bacteria from another compared to controls that experience only the second prey. The effect was consistent across all six tested species of bacteria. These switching costs typically disappear within a day, indicating adjustment to new prey bacteria. This suggests that these costs are physiological. Second, amoebas usually grow more slowly on mixtures of prey bacteria compared to the expectation based on their growth on single prey. There were clear mixing costs in three of the six tested prey mixtures, and none showed significant mixing benefits. These results support the idea that, although amoebas can consume a variety of prey, they must use partially different methods and thus must pay costs to handle multiple prey, either sequentially or simultaneously.


Asunto(s)
Amoeba , Dictyostelium , Animales , Dictyostelium/microbiología , Eucariontes , Dieta , Bacterias , Amoeba/microbiología , Conducta Predatoria , Cadena Alimentaria
2.
Proc Biol Sci ; 291(2027): 20241111, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39016123

RESUMEN

Symbiotic interactions may change depending on third parties like predators or prey. Third-party interactions with prey bacteria are central to the symbiosis between Dictyostelium discoideum social amoeba hosts and Paraburkholderia bacterial symbionts. Symbiosis with inedible Paraburkholderia allows host D. discoideum to carry prey bacteria through the dispersal stage where hosts aggregate and develop into fruiting bodies that disperse spores. Carrying prey bacteria benefits hosts when prey are scarce but harms hosts when prey bacteria are plentiful, possibly because hosts leave some prey bacteria behind while carrying. Thus, understanding benefits and costs in this symbiosis requires measuring how many prey bacteria are eaten, carried and left behind by infected hosts. We found that Paraburkholderia infection makes hosts leave behind both symbionts and prey bacteria. However, the number of prey bacteria left uneaten was too small to explain why infected hosts produced fewer spores than uninfected hosts. Turning to carried bacteria, we found that hosts carry prey bacteria more often after developing in prey-poor environments than in prey-rich ones. This suggests that carriage is actively modified to ensure hosts have prey in the harshest conditions. Our results show that multi-faceted interactions with third parties shape the evolution of symbioses in complex ways.


Asunto(s)
Dictyostelium , Simbiosis , Dictyostelium/fisiología , Dictyostelium/microbiología , Burkholderiaceae/fisiología
3.
Proc Biol Sci ; 290(2003): 20230977, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37464760

RESUMEN

The social amoeba Dictyostelium discoideum engages in a complex relationship with bacterial endosymbionts in the genus Paraburkholderia, which can benefit their host by imbuing it with the ability to carry prey bacteria throughout its life cycle. The relationship between D. discoideum and Paraburkholderia has been shown to take place across many strains and a large geographical area, but little is known about Paraburkholderia's potential interaction with other dictyostelid species. We explore the ability of three Paraburkholderia species to stably infect and induce bacterial carriage in other dictyostelid hosts. We found that all three Paraburkholderia species successfully infected and induced carriage in seven species of Dictyostelium hosts. While the overall behaviour was qualitatively similar to that previously observed in infections of D. discoideum, differences in the outcomes of different host/symbiont combinations suggest a degree of specialization between partners. Paraburkholderia was unable to maintain a stable association with the more distantly related host Polysphondylium violaceum. Our results suggest that the mechanisms and evolutionary history of Paraburkholderia's symbiotic relationships may be general within Dictyostelium hosts, but not so general that it can associate with hosts of other genera. Our work further develops an emerging model system for the study of symbiosis in microbes.


Asunto(s)
Amoeba , Burkholderiaceae , Dictyostelium , Bacterias , Amoeba/microbiología , Filogenia
4.
Proc Biol Sci ; 290(2013): 20231722, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38113942

RESUMEN

Many microbes interact with one another, but the difficulty of directly observing these interactions in nature makes interpreting their adaptive value complicated. The social amoeba Dictyostelium discoideum forms aggregates wherein some cells are sacrificed for the benefit of others. Within chimaeric aggregates containing multiple unrelated lineages, cheaters can gain an advantage by undercontributing, but the extent to which wild D. discoideum has adapted to cheat is not fully clear. In this study, we experimentally evolved D. discoideum in an environment where there were no selective pressures to cheat or resist cheating in chimaeras. Dictyostelium discoideum lines grown in this environment evolved reduced competitiveness within chimaeric aggregates and reduced ability to migrate during the slug stage. By contrast, we did not observe a reduction in cell number, a trait for which selection was not relaxed. The observed loss of traits that our laboratory conditions had made irrelevant suggests that these traits were adaptations driven and maintained by selective pressures D. discoideum faces in its natural environment. Our results suggest that D. discoideum faces social conflict in nature, and illustrate a general approach that could be applied to searching for social or non-social adaptations in other microbes.


Asunto(s)
Dictyostelium , Evolución Social
5.
PLoS Biol ; 17(6): e3000320, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31226105

RESUMEN

Some forms of stable cooperation can evolve though pleiotropy with a beneficial private trait. This Formal Comment addresses a recent challenge to this idea, arguing that for synergistic, frequency-dependent cooperation, pleiotropy can raise the frequency up to a point where cooperation is favoured on its own.


Asunto(s)
Pleiotropía Genética , Fenotipo
6.
Proc Natl Acad Sci U S A ; 116(19): 9463-9468, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31023888

RESUMEN

Evolutionary conflict can drive rapid adaptive evolution, sometimes called an arms race, because each party needs to respond continually to the adaptations of the other. Evidence for such arms races can sometimes be seen in morphology, in behavior, or in the genes underlying sexual interactions of host-pathogen interactions, but is rarely predicted a priori. Kin selection theory predicts that conflicts of interest should usually be reduced but not eliminated among genetic relatives, but there is little evidence as to whether conflict within families can drive rapid adaptation. Here we test multiple predictions about how conflict over the amount of resources an offspring receives from its parent would drive rapid molecular evolution in seed tissues of the flowering plant Arabidopsis As predicted, there is more adaptive evolution in genes expressed in Arabidopsis seeds than in other specialized organs, more in endosperms and maternal tissues than in embryos, and more in the specific subtissues involved in nutrient transfer. In the absence of credible alternative hypotheses, these results suggest that kin selection and conflict are important in plants, that the conflict includes not just the mother and offspring but also the triploid endosperm, and that, despite the conflict-reducing role of kinship, family members can engage in slow but steady tortoise-like arms races.


Asunto(s)
Adaptación Fisiológica , Arabidopsis/fisiología , Evolución Biológica , Endospermo/fisiología
7.
Appl Environ Microbiol ; 87(2)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33158887

RESUMEN

Amoebae are protists that have complicated relationships with bacteria, covering the whole spectrum of symbiosis. Amoeba-bacterium interactions contribute to the study of predation, symbiosis, pathogenesis, and human health. Given the complexity of their relationships, it is necessary to understand the ecology and evolution of their interactions. In this paper, we provide an updated review of the current understanding of amoeba-bacterium interactions. We start by discussing the diversity of amoebae and their bacterial partners. We also define three types of ecological interactions between amoebae and bacteria and discuss their different outcomes. Finally, we focus on the implications of amoeba-bacterium interactions on human health, horizontal gene transfer, drinking water safety, and the evolution of symbiosis. In conclusion, amoeba-bacterium interactions are excellent model systems to investigate a wide range of scientific questions. Future studies should utilize advanced techniques to address research gaps, such as detecting hidden diversity, lack of amoeba genomes, and the impacts of amoeba predation on the microbiome.


Asunto(s)
Amoeba/fisiología , Fenómenos Fisiológicos Bacterianos , Interacciones Microbianas , Bacterias
8.
Proc Natl Acad Sci U S A ; 115(12): 3096-3101, 2018 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-29507206

RESUMEN

Many microbes engage in social interactions. Some of these have come to play an important role in the study of cooperation and conflict, largely because, unlike most animals, they can be genetically manipulated and experimentally evolved. However, whereas animal social behavior can be observed and assessed in natural environments, microbes usually cannot, so we know little about microbial social adaptations in nature. This has led to some difficult-to-resolve controversies about social adaptation even for well-studied traits such as bacterial quorum sensing, siderophore production, and biofilms. Here we use molecular signatures of population genetics and molecular evolution to address controversies over the existence of altruism and cheating in social amoebas. First, we find signatures of rapid adaptive molecular evolution that are consistent with social conflict being a significant force in nature. Second, we find population-genetic signatures of purifying selection to support the hypothesis that the cells that form the sterile stalk evolve primarily through altruistic kin selection rather than through selfish direct reproduction. Our results show how molecular signatures can provide insight into social adaptations that cannot be observed in their natural context, and they support the hypotheses that social amoebas in the wild are both altruists and cheaters.


Asunto(s)
Dictyostelium/genética , Dictyostelium/fisiología , Adaptación Fisiológica , Evolución Molecular , Regulación de la Expresión Génica , Variación Genética , Genoma de Protozoos , Selección Genética
9.
Proc Natl Acad Sci U S A ; 115(15): 3758-3763, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29592954

RESUMEN

Investigating microbial interactions from an ecological perspective is a particularly fruitful approach to unveil both new chemistry and bioactivity. Microbial predator-prey interactions in particular rely on natural products as signal or defense molecules. In this context, we identified a grazing-resistant Pseudomonas strain, isolated from the bacterivorous amoeba Dictyostelium discoideum. Genome analysis of this bacterium revealed the presence of two biosynthetic gene clusters that were found adjacent to each other on a contiguous stretch of the bacterial genome. Although one cluster codes for the polyketide synthase producing the known antibiotic mupirocin, the other cluster encodes a nonribosomal peptide synthetase leading to the unreported cyclic lipopeptide jessenipeptin. We describe its complete structure elucidation, as well as its synergistic activity against methicillin-resistant Staphylococcus aureus, when in combination with mupirocin. Both biosynthetic gene clusters are regulated by quorum-sensing systems, with 3-oxo-decanoyl homoserine lactone (3-oxo-C10-AHL) and hexanoyl homoserine lactone (C6-AHL) being the respective signal molecules. This study highlights the regulation, richness, and complex interplay of bacterial natural products that emerge in the context of microbial competition.


Asunto(s)
Productos Biológicos/farmacología , Dictyostelium/fisiología , Sinergismo Farmacológico , Mupirocina/farmacología , Pseudomonas/metabolismo , Percepción de Quorum/fisiología , Infecciones Estafilocócicas/tratamiento farmacológico , 4-Butirolactona/análogos & derivados , 4-Butirolactona/fisiología , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Genoma Bacteriano , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología
10.
Mol Ecol ; 28(4): 847-862, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30575161

RESUMEN

The establishment of symbioses between eukaryotic hosts and bacterial symbionts in nature is a dynamic process. The formation of such relationships depends on the life history of both partners. Bacterial symbionts of amoebae may have unique evolutionary trajectories to the symbiont lifestyle, because bacteria are typically ingested as prey. To persist after ingestion, bacteria must first survive phagocytosis. In the social amoeba Dictyostelium discoideum, certain strains of Burkholderia bacteria are able to resist amoebal digestion and maintain a persistent relationship that includes carriage throughout the amoeba's social cycle that culminates in spore formation. Some Burkholderia strains allow their host to carry other bacteria, as food. This carried food is released in new environments in a trait called farming. To better understand the diversity and prevalence of Burkholderia symbionts and the traits they impart to their amoebae hosts, we first screened 700 natural isolates of D. discoideum and found 25% infected with Burkholderia. We next used a multilocus phylogenetic analysis and identified two independent transitions by Burkholderia to the symbiotic lifestyle. Finally, we tested the ability of 38 strains of Burkholderia from D. discoideum, as well as strains isolated from other sources, for traits relevant to symbiosis in D. discoideum. Only D. discoideum native isolates belonging to the Burkholderia agricolaris, B. hayleyella, and B. bonniea species were able to form persistent symbiotic associations with D. discoideum. The Burkholderia-Dictyostelium relationship provides a promising arena for further studies of the pathway to symbiosis in a unique system.


Asunto(s)
Amoeba/microbiología , Burkholderia/genética , Burkholderia/fisiología , Burkholderia/clasificación , Dictyostelium/clasificación , Dictyostelium/genética , Dictyostelium/fisiología , Filogenia , Simbiosis/genética , Simbiosis/fisiología
11.
Proc Natl Acad Sci U S A ; 113(4): 1020-5, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26755583

RESUMEN

Sexual reproduction brings genes from two parents (matrigenes and patrigenes) together into one individual. These genes, despite being unrelated, should show nearly perfect cooperation because each gains equally through the production of offspring. However, an individual's matrigenes and patrigenes can have different probabilities of being present in other relatives, so kin selection could act on them differently. Such intragenomic conflict could be implemented by partial or complete silencing (imprinting) of an allele by one of the parents. Evidence supporting this theory is seen in offspring-mother interactions, with patrigenes favoring acquisition of more of the mother's resources if some of the costs fall on half-siblings who do not share the patrigene. The kinship theory of intragenomic conflict is little tested in other contexts, but it predicts that matrigene-patrigene conflict may be rife in social insects. We tested the hypothesis that honey bee worker reproduction is promoted more by patrigenes than matrigenes by comparing across nine reciprocal crosses of two distinct genetic stocks. As predicted, hybrid workers show reproductive trait characteristics of their paternal stock, (indicating enhanced activity of the patrigenes on these traits), greater patrigenic than matrigenic expression, and significantly increased patrigenic-biased expression in reproductive workers. These results support both the general prediction that matrigene-patrigene conflict occurs in social insects and the specific prediction that honey bee worker reproduction is driven more by patrigenes. The success of these predictions suggests that intragenomic conflict may occur in many contexts where matrigenes and patrigenes have different relatednesses to affected kin.


Asunto(s)
Abejas/genética , Animales , Abejas/fisiología , Cruzamientos Genéticos , Metilación de ADN , Familia , Femenino , Masculino , Polimorfismo de Nucleótido Simple , Reproducción
12.
PLoS Biol ; 13(4): e1002133, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25909860

RESUMEN

The authors of "Relatedness, Conflict, and the Evolution of Eusociality" respond to objections raised by Martin Nowak and Benjamin Allen.


Asunto(s)
Modelos Teóricos , Conducta Social , Animales
13.
PLoS Biol ; 13(3): e1002098, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25799485

RESUMEN

The evolution of sterile worker castes in eusocial insects was a major problem in evolutionary theory until Hamilton developed a method called inclusive fitness. He used it to show that sterile castes could evolve via kin selection, in which a gene for altruistic sterility is favored when the altruism sufficiently benefits relatives carrying the gene. Inclusive fitness theory is well supported empirically and has been applied to many other areas, but a recent paper argued that the general method of inclusive fitness was wrong and advocated an alternative population genetic method. The claim of these authors was bolstered by a new model of the evolution of eusociality with novel conclusions that appeared to overturn some major results from inclusive fitness. Here we report an expanded examination of this kind of model for the evolution of eusociality and show that all three of its apparently novel conclusions are essentially false. Contrary to their claims, genetic relatedness is important and causal, workers are agents that can evolve to be in conflict with the queen, and eusociality is not so difficult to evolve. The misleading conclusions all resulted not from incorrect math but from overgeneralizing from narrow assumptions or parameter values. For example, all of their models implicitly assumed high relatedness, but modifying the model to allow lower relatedness shows that relatedness is essential and causal in the evolution of eusociality. Their modeling strategy, properly applied, actually confirms major insights of inclusive fitness studies of kin selection. This broad agreement of different models shows that social evolution theory, rather than being in turmoil, is supported by multiple theoretical approaches. It also suggests that extensive prior work using inclusive fitness, from microbial interactions to human evolution, should be considered robust unless shown otherwise.


Asunto(s)
Evolución Biológica , Aptitud Genética/fisiología , Modelos Genéticos , Procesos de Determinación del Sexo , Conducta Social , Animales , Hormigas/fisiología , Abejas/fisiología , Conducta Animal , Genética de Población , Isópteros/fisiología , Selección Genética , Avispas/fisiología
14.
Proc Natl Acad Sci U S A ; 112(36): E5029-37, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26305954

RESUMEN

Symbiotic associations can allow an organism to acquire novel traits by accessing the genetic repertoire of its partner. In the Dictyostelium discoideum farming symbiosis, certain amoebas (termed "farmers") stably associate with bacterial partners. Farmers can suffer a reproductive cost but also gain beneficial capabilities, such as carriage of bacterial food (proto-farming) and defense against competitors. Farming status previously has been attributed to amoeba genotype, but the role of bacterial partners in its induction has not been examined. Here, we explore the role of bacterial associates in the initiation, maintenance, and phenotypic effects of the farming symbiosis. We demonstrate that two clades of farmer-associated Burkholderia isolates colonize D. discoideum nonfarmers and infectiously endow them with farmer-like characteristics, indicating that Burkholderia symbionts are a major driver of the farming phenomenon. Under food-rich conditions, Burkholderia-colonized amoebas produce fewer spores than uncolonized counterparts, with the severity of this reduction being dependent on the Burkholderia colonizer. However, the induction of food carriage by Burkholderia colonization may be considered a conditionally adaptive trait because it can confer an advantage to the amoeba host when grown in food-limiting conditions. We observed Burkholderia inside and outside colonized D. discoideum spores after fruiting body formation; this observation, together with the ability of Burkholderia to colonize new amoebas, suggests a mixed mode of symbiont transmission. These results change our understanding of the D. discoideum farming symbiosis by establishing that the bacterial partner, Burkholderia, is an important causative agent of the farming phenomenon.


Asunto(s)
Amoeba/microbiología , Burkholderia/fisiología , Dictyostelium/microbiología , Simbiosis , Amoeba/crecimiento & desarrollo , Amoeba/metabolismo , Burkholderia/clasificación , Burkholderia/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Dictyostelium/crecimiento & desarrollo , Dictyostelium/metabolismo , Interacciones Huésped-Patógeno , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Esporas Protozoarias/fisiología
15.
Am Nat ; 189(4): 345-353, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28350496

RESUMEN

Evolutionary biology is undergirded by an extensive and impressive set of mathematical models. Yet only one result, Fisher's theorem about selection and fitness, is generally accorded the status of a fundamental theorem. I argue that although its fundamental status is justified by its simplicity and scope, there are additional results that seem similarly fundamental. I suggest that the most fundamental theorem of evolution is the Price equation, both because of its simplicity and broad scope and because it can be used to derive four other familiar results that are similarly fundamental: Fisher's average-excess equation, Robertson's secondary theorem of natural selection, the breeder's equation, and Fisher's fundamental theorem. These derivations clarify both the relationships behind these results and their assumptions. Slightly less fundamental results include those for multivariate evolution and social selection. A key feature of fundamental theorems is that they have great simplicity and scope, which are often achieved by sacrificing perfect accuracy. Quantitative genetics has been more productive of fundamental theorems than population genetics, probably because its empirical focus on unknown genotypes freed it from the tyranny of detail and allowed it to focus on general issues.


Asunto(s)
Evolución Biológica , Genética de Población , Genotipo , Modelos Genéticos , Modelos Teóricos , Selección Genética
16.
Nature ; 469(7330): 393-6, 2011 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-21248849

RESUMEN

Agriculture has been a large part of the ecological success of humans. A handful of animals, notably the fungus-growing ants, termites and ambrosia beetles, have advanced agriculture that involves dispersal and seeding of food propagules, cultivation of the crop and sustainable harvesting. More primitive examples, which could be called husbandry because they involve fewer adaptations, include marine snails farming intertidal fungi and damselfish farming algae. Recent work has shown that microorganisms are surprisingly like animals in having sophisticated behaviours such as cooperation, communication and recognition, as well as many kinds of symbiosis. Here we show that the social amoeba Dictyostelium discoideum has a primitive farming symbiosis that includes dispersal and prudent harvesting of the crop. About one-third of wild-collected clones engage in husbandry of bacteria. Instead of consuming all bacteria in their patch, they stop feeding early and incorporate bacteria into their fruiting bodies. They then carry bacteria during spore dispersal and can seed a new food crop, which is a major advantage if edible bacteria are lacking at the new site. However, if they arrive at sites already containing appropriate bacteria, the costs of early feeding cessation are not compensated for, which may account for the dichotomous nature of this farming symbiosis. The striking convergent evolution between bacterial husbandry in social amoebas and fungus farming in social insects makes sense because multigenerational benefits of farming go to already established kin groups.


Asunto(s)
Bacterias/crecimiento & desarrollo , Dictyostelium/microbiología , Dictyostelium/fisiología , Simbiosis , Agricultura , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Evolución Biológica , Dictyostelium/citología , Conducta Alimentaria/fisiología , Reproducción/fisiología , Conducta Social , Esporas/fisiología
17.
Proc Natl Acad Sci U S A ; 111(4): 1237-44, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24474743

RESUMEN

Biological market theory has been used successfully to explain cooperative behavior in many animal species. Microbes also engage in cooperative behaviors, both with hosts and other microbes, that can be described in economic terms. However, a market approach is not traditionally used to analyze these interactions. Here, we extend the biological market framework to ask whether this theory is of use to evolutionary biologists studying microbes. We consider six economic strategies used by microbes to optimize their success in markets. We argue that an economic market framework is a useful tool to generate specific and interesting predictions about microbial interactions, including the evolution of partner discrimination, hoarding strategies, specialized versus diversified mutualistic services, and the role of spatial structures, such as flocks and consortia. There is untapped potential for studying the evolutionary dynamics of microbial systems. Market theory can help structure this potential by characterizing strategic investment of microbes across a diversity of conditions.


Asunto(s)
Comercio , Microbiología , Conducta Cooperativa , Simbiosis
18.
Proc Biol Sci ; 283(1829)2016 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-27097923

RESUMEN

The social amoeba Dictyostelium discoideum is unusual among eukaryotes in having both unicellular and multicellular stages. In the multicellular stage, some cells, called sentinels, ingest toxins, waste and bacteria. The sentinel cells ultimately fall away from the back of the migrating slug, thus removing these substances from the slug. However, some D. discoideum clones (called farmers) carry commensal bacteria through the multicellular stage, while others (called non-farmers) do not. Farmers profit from their beneficial bacteria. To prevent the loss of these bacteria, we hypothesize that sentinel cell numbers may be reduced in farmers, and thus farmers may have a diminished capacity to respond to pathogenic bacteria or toxins. In support, we found that farmers have fewer sentinel cells compared with non-farmers. However, farmers produced no fewer viable spores when challenged with a toxin. These results are consistent with the beneficial bacteria Burkholderia providing protection against toxins. The farmers did not vary in spore production with and without a toxin challenge the way the non-farmers did, which suggests the costs of Burkholderia may be fixed while sentinel cells may be inducible. Therefore, the costs for non-farmers are only paid in the presence of the toxin. When the farmers were cured of their symbiotic bacteria with antibiotics, they behaved just like non-farmers in response to a toxin challenge. Thus, the advantages farmers gain from carrying bacteria include not just food and protection against competitors, but also protection against toxins.


Asunto(s)
Dictyostelium/citología , Dictyostelium/microbiología , Animales , Burkholderia/fisiología , Dictyostelium/efectos de los fármacos , Fagocitos/efectos de los fármacos , Fagocitos/microbiología , Fagocitos/fisiología , Esporas Protozoarias/efectos de los fármacos , Esporas Protozoarias/fisiología , Simbiosis/fisiología , Toxinas Biológicas/toxicidad
19.
Annu Rev Microbiol ; 65: 349-67, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21682642

RESUMEN

Recognition of relatives is important in microbes because they perform many behaviors that have costs to the actor while benefiting neighbors. Microbes cooperate for nourishment, movement, virulence, iron acquisition, protection, quorum sensing, and production of multicellular biofilms or fruiting bodies. Helping others is evolutionarily favored if it benefits others who share genes for helping, as specified by kin selection theory. If microbes generally find themselves in clonal patches, then no special means of discrimination is necessary. Much real discrimination is actually of kinds, not kin, as in poison-antidote systems, such as bacteriocins, in which cells benefit their own kind by poisoning others, and in adhesion systems, in which cells of the same kind bind together. These behaviors can elevate kinship generally and make cooperation easier to evolve and maintain.


Asunto(s)
Bacterias/genética , Evolución Molecular , Hongos/genética , Selección Genética , Animales , Fenómenos Fisiológicos Bacterianos , Comunicación Celular , Eucariontes/genética , Eucariontes/fisiología , Hongos/fisiología , Modelos Genéticos
20.
Proc Natl Acad Sci U S A ; 110(36): 14528-33, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-23898207

RESUMEN

Stable multipartite mutualistic associations require that all partners benefit. We show that a single mutational step is sufficient to turn a symbiotic bacterium from an inedible but host-beneficial secondary metabolite producer into a host food source. The bacteria's host is a "farmer" clone of the social amoeba Dictyostelium discoideum that carries and disperses bacteria during its spore stage. Associated with the farmer are two strains of Pseudomonas fluorescens, only one of which serves as a food source. The other strain produces diffusible small molecules: pyrrolnitrin, a known antifungal agent, and a chromene that potently enhances the farmer's spore production and depresses a nonfarmer's spore production. Genome sequence and phylogenetic analyses identify a derived point mutation in the food strain that generates a premature stop codon in a global activator (gacA), encoding the response regulator of a two-component regulatory system. Generation of a knockout mutant of this regulatory gene in the nonfood bacterial strain altered its secondary metabolite profile to match that of the food strain, and also, independently, converted it into a food source. These results suggest that a single mutation in an inedible ancestral strain that served a protective role converted it to a "domesticated" food source.


Asunto(s)
Proteínas Bacterianas/genética , Dictyostelium/fisiología , Mutación , Pseudomonas fluorescens/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Benzopiranos/química , Benzopiranos/metabolismo , Cromatografía Líquida de Alta Presión , Codón sin Sentido , Dictyostelium/metabolismo , Dictyostelium/microbiología , Genes Reguladores/genética , Interacciones Huésped-Patógeno , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Estructura Molecular , Filogenia , Pseudomonas fluorescens/clasificación , Pseudomonas fluorescens/fisiología , Pirrolnitrina/química , Pirrolnitrina/metabolismo , Homología de Secuencia de Aminoácido , Esporas Protozoarias/metabolismo , Esporas Protozoarias/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA