Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
PLoS Pathog ; 19(8): e1011560, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37603557

RESUMEN

The microsporidian genus Nosema is primarily known to infect insects of economic importance stimulating high research interest, while other hosts remain understudied. Nosema granulosis is one of the formally described Nosema species infecting amphipod crustaceans, being known to infect only two host species. Our first aim was to characterize Nosema spp. infections in different amphipod species from various European localities using the small subunit ribosomal DNA (SSU) marker. Second, we aimed to assess the phylogenetic diversity, host specificity and to explore the evolutionary history that may explain the diversity of gammarid-infecting Nosema lineages by performing a phylogenetic reconstruction based on RNA polymerase II subunit B1 (RPB1) gene sequences. For the host species Gammarus balcanicus, we also analyzed whether parasites were in excess in females to test for sex ratio distortion in relation with Nosema infection. We identified Nosema spp. in 316 individuals from nine amphipod species being widespread in Europe. The RPB1-based phylogenetic reconstruction using newly reported sequences and available data from other invertebrates identified 39 haplogroups being associated with amphipods. These haplogroups clustered into five clades (A-E) that did not form a single amphipod-infecting monophyletic group. Closely related sister clades C and D correspond to Nosema granulosis. Clades A, B and E might represent unknown Nosema species infecting amphipods. Host specificity seemed to be variable with some clades being restricted to single hosts, and some that could be found in several host species. We show that Nosema parasite richness in gammarid hosts is much higher than expected, illustrating the advantage of the use of RPB1 marker over SSU. Finally, we found no hint of sex ratio distortion in Nosema clade A infecting G. balcanicus. This study shows that Nosema spp. are abundant, widespread and diverse in European gammarids. Thus, Nosema is as diverse in aquatic as in terrestrial hosts.


Asunto(s)
Anfípodos , Nosema , Humanos , Femenino , Animales , Nosema/genética , Anfípodos/genética , Filogenia , Agua Dulce
2.
BMC Evol Biol ; 20(1): 149, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33176694

RESUMEN

BACKGROUND: Although the processes of co-evolution between parasites and their hosts are well known, evidence of co-speciation remains scarce. Microsporidian intracellular parasites, due to intimate relationships with their hosts and mixed mode of transmission (horizontal but also vertical, from mother to offspring), may represent an interesting biological model for investigating co-speciation. Amphipod crustaceans, especially gammarids, are regular hosts of microsporidian parasites, in particular the Dictyocoela spp., which have so far been found limited to these amphipods and are known to use a vertical mode of transmission. The amphipod genus Gammarus has a diversification history spanning the last 50-60 Mya and an extensive cryptic diversity in most of the nominal species. Here, we investigated the degree of co-diversification between Dictyocoela and Gammarus balcanicus, an amphipod with high degrees of ancient cryptic diversification and lineage endemism, by examining the genetic diversity of these parasites over the entire geographic range of the host. We hypothesised that the strong host diversification and vertical transmission of Dictyocoela would promote co-diversification. RESULTS: Using the parasite SSU rDNA as a molecular marker, analyzing 2225 host specimens from 88 sites covering whole host range, we found 31 haplogroups of Dictyocoela, 30 of which were novel, belonging to four Dictyocoela species already known to infect other Gammarus spp. The relationships between Dictyocoela and gammarids is therefore ancient, with the speciation in parasites preceding those of the hosts. Each novel haplogroup was nevertheless specific to G. balcanicus, leaving the possibility for subsequent co-diversification process during host diversification. A Procrustean Approach to Co-phylogeny (PACo) analysis revealed that diversification of Dictyocoela was not random with respect to that of the host. We found high degrees of congruence between the diversification of G. balcanicus and that of Dictyocoela roeselum and D. muelleri. However, we also found some incongruences between host and Dictyocoela phylogenies, e.g. in D. duebenum, probably due to host shifts between different G. balcanicus cryptic lineages. CONCLUSION: The evolutionary history of Dictyocoela and Gammarus balcanicus represents an example of an overall host-parasite co-diversification, including cases of host shifts.


Asunto(s)
Anfípodos , Coevolución Biológica , Microsporidios , Anfípodos/genética , Anfípodos/parasitología , Animales , Femenino , Interacciones Huésped-Parásitos , Masculino , Microsporidios/genética , Filogenia
3.
Int J Parasitol Parasites Wildl ; 14: 121-129, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33604238

RESUMEN

Parasites and other symbionts deeply influence host organisms, and no living organism can be considered to have evolved independent of its symbionts. The first step towards understanding symbiotic influences upon host organisms is a strong supporting knowledge of parasite/symbiont diversity. Parasites of freshwater amphipods are diverse, with Microsporidia being a major group. These intracellular parasites impact gammarid fitness in different ways, ranging from reduced fitness to increased fecundity. Many Microsporidia have been recorded using molecular data, with multiple taxa pending formal taxonomic description. While some parasites are common, others are known only through sporadic records of single infections. In this study, we focus on rare/sporadic microsporidian infections within Gammarus balcanicus, a host species complex with a high level of endemism. In addition to enriching our knowledge on Microsporidia parasite diversity in amphipod hosts, we test whether these symbionts are specific to G. balcanicus or if they are the same taxa infecting other gammarid species. Of 2231 hosts from 87 sites, we catalogued 29 sequences of "rare" Microsporidia clustering into 19 haplogroups. These haplogroups cluster into 11 lineages: four pre-described taxa (Cucumispora roeselum, C. ornata, C. dikerogammari and Enterocytospora artemiae) and seven 'Molecular Operational Taxonomic Units', which are known from previously published studies to infect other European amphipod species. Our study significantly widens the geographic range of these Microsporidia and expands the known spectrum of hosts infected. Our results suggest that these parasites are ancient infections of European gammarids. For some host-parasite systems, we hypothesize that the common parasite ancestors that infected the hosts' common ancestors, diversified alongside host diversification. For others, we observe Microsporidia taxa with wide host ranges that do not follow host phylogeny.

4.
Parasit Vectors ; 12(1): 327, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31253176

RESUMEN

BACKGROUND: Microsporidians are obligate endoparasites infecting taxonomically diverse hosts. Both vertical (from mother to eggs) and horizontal (between conspecifics or between species) transmission routes are known. While the former may promote co-speciation and host-specificity, the latter may promote shifts between host species. Among aquatic arthropods, freshwater amphipod crustaceans are hosts for many microsporidian species. However, despite numerous studies, no general pattern emerged about host specificity and co-diversification. In south-eastern Europe, the gammarid Gammarus roeselii is composed of 13 cryptic lineages of Miocene to Pleistocene age but few genotypes of one lineage have spread postglacially throughout north-western Europe. Based on nearly 100 sampling sites covering its entire range, we aim to: (i) explore the microsporidian diversity present in G. roeselii and their phylogenetic relationships, especially in relation to the parasites infecting other Gammaridae; (ii) test if the host phylogeographical history might have impacted host-parasite association (e.g. co-diversifications or recent host shifts from local fauna). METHODS: We used part of the small subunit rRNA gene as source of sequences to identify and determine the phylogenetic position of the microsporidian taxa infecting G. roeselii. RESULTS: Microsporidian diversity was high in G. roeselii with 24 detected haplogroups, clustered into 18 species-level taxa. Ten microsporidian species were rare, infecting a few individual hosts in a few populations, and were mostly phylogenetically related to parasites from other amphipods or various crustaceans. Other microsporidians were represented by widespread genera with high prevalence: Nosema, Cucumispora and Dictyocoela. Two contrasting host association patterns could be observed. First, two vertically transmitted microsporidian species, Nosema granulosis and Dictyocoela roeselum, share the pattern of infecting G. roeselii over most of its range and are specific to this host suggesting the co-diversification scenario. This pattern contrasted with that of Dictyocoela muelleri, the three species of Cucumispora, and the rare parasites, present only in the recently colonised region by the host. These patterns suggest recent acquisitions from local host species, after the recent spread of G. roeselii. CONCLUSIONS: Microsporidians infecting G. roeselii revealed two scenarios of host-parasite associations: (i) ancient associations with vertically transmitted parasites that probably co-diversified with their hosts, and (ii) host shifts from local host species, after the postglacial spread of G. roeselii.


Asunto(s)
Anfípodos/parasitología , Interacciones Huésped-Parásitos , Microsporidios/fisiología , Anfípodos/fisiología , Animales , Femenino , Genes de ARNr , Variación Genética , Masculino , Microsporidios/genética , Microsporidiosis , Filogenia , Filogeografía , Especificidad de la Especie
5.
BMC Res Notes ; 10(1): 663, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29191239

RESUMEN

OBJECTIVE: The arctic fox (Vulpes lagopus) is a circumpolar species inhabiting all accessible Arctic tundra habitats. The species forms a panmictic population over areas connected by sea ice, but recently, kin clustering and population differentiation were detected even in regions where sea ice was present. The purpose of this study was to examine the genetic structure of a population in the High Arctic using a robust panel of highly polymorphic microsatellites. RESULTS: We analyzed the genotypes of 210 individuals from Bylot Island, Nunavut, Canada, using 15 microsatellite loci. No pattern of isolation-by-distance was detected, but a spatial principal component analysis (sPCA) revealed the presence of genetic subdivisions. Overall, the sPCA revealed two spatially distinct genetic clusters corresponding to the northern and southern parts of the study area, plus another subdivision within each of these two clusters. The north-south genetic differentiation partly matched the distribution of a snow goose colony, which could reflect a preference for settling into familiar ecological environments. Secondary clusters may result from higher-order social structures (neighbourhoods) that use landscape features to delimit their borders. The cryptic genetic subdivisions found in our population may highlight ecological processes deserving further investigations in arctic foxes at larger, regional spatial scales.


Asunto(s)
Ecosistema , Zorros/genética , Sitios Genéticos/genética , Cubierta de Hielo , Repeticiones de Microsatélite/genética , Animales , Regiones Árticas , Canadá , Genética de Población , Reacción en Cadena de la Polimerasa , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA