Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 14458, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34262072

RESUMEN

Mounting an appropriate ventilatory response to exercise is crucial to meeting metabolic demands, and abnormal ventilatory responses may contribute to exercise-intolerance (EX-inT) in heart failure (HF) patients. We sought to determine if abnormal ventilatory chemoreflex control contributes to EX-inT in volume-overload HF rats. Cardiac function, hypercapnic (HCVR) and hypoxic (HVR) ventilatory responses, and exercise tolerance were assessed at the end of a 6 week exercise training program. At the conclusion of the training program, exercise tolerant HF rats (HF + EX-T) exhibited improvements in cardiac systolic function and reductions in HCVR, sympathetic tone, and arrhythmias. In contrast, HF rats that were exercise intolerant (HF + EX-inT) exhibited worse diastolic dysfunction, and showed no improvements in cardiac systolic function, HCVR, sympathetic tone, or arrhythmias at the conclusion of the training program. In addition, HF + EX-inT rats had impaired HVR which was associated with increased arrhythmia susceptibility and mortality during hypoxic challenges (~ 60% survival). Finally, we observed that exercise tolerance in HF rats was related to carotid body (CB) function as CB ablation resulted in impaired exercise capacity in HF + EX-T rats. Our results indicate that: (i) exercise may have detrimental effects on cardiac function in HF-EX-inT, and (ii) loss of CB chemoreflex sensitivity contributes to EX-inT in HF.


Asunto(s)
Cuerpo Carotídeo , Insuficiencia Cardíaca , Animales , Arritmias Cardíacas , Hipercapnia , Hipoxia , Ratas , Reflejo
2.
J Hypertens ; 39(6): 1125-1133, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33560061

RESUMEN

BACKGROUND AND OBJECTIVE: Chronic intermittent hypoxia (CIH), one of the main features of obstructive sleep apnea (OSA), enhances carotid body-mediated chemoreflex and induces hypertension and breathing disorders. The carbamylated form of erythropoietin (cEpo) may have beneficial effects as it retains its antioxidant/anti-inflammatory and neuroprotective profile without increasing red blood cells number. However, no studies have evaluated the potential therapeutic effect of cEpo on CIH-related cardiorespiratory disorders. We aimed to determine whether cEpo normalized the CIH-enhanced carotid body ventilatory chemoreflex, the hypertension and ventilatory disorders in rats. METHODS: Male Sprague-Dawley rats (250 g) were exposed to CIH (5% O2, 12/h, 8 h/day) for 28 days. cEPO (20 µg/kg, i.p) was administrated from day 21 every other day for one more week. Cardiovascular and respiratory function were assessed in freely moving animals. RESULTS: Twenty-one days of CIH increased carotid body-mediated chemoreflex responses as evidenced by a significant increase in the hypoxic ventilatory response (FiO2 10%) and triggered irregular eupneic breathing, active expiration, and produced hypertension. cEpo treatment significantly reduced the carotid body--chemoreflex responses, normalizes breathing patterns and the hypertension in CIH. In addition, cEpo treatment effectively normalized carotid body chemosensory responses evoked by acute hypoxic stimulation in CIH rats. CONCLUSION: Present results strongly support beneficial cardiorespiratory therapeutic effects of cEpo during CIH exposure.


Asunto(s)
Eritropoyetina , Síndromes de la Apnea del Sueño , Animales , Humanos , Hipoxia , Masculino , Ratas , Ratas Sprague-Dawley , Respiración , Síndromes de la Apnea del Sueño/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA