Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Cell Sci ; 125(Pt 3): 714-23, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22331361

RESUMEN

The stabilisation of acetylcholine receptors (AChRs) at the neuromuscular junction depends on muscle activity and the cooperative action of myosin Va and protein kinase A (PKA) type I. To execute its function, PKA has to be present in a subsynaptic microdomain where it is enriched by anchoring proteins. Here, we show that the AChR-associated protein, rapsyn, interacts with PKA type I in C2C12 and T-REx293 cells as well as in live mouse muscle beneath the neuromuscular junction. Molecular modelling, immunoprecipitation and bimolecular fluorescence complementation approaches identify an α-helical stretch of rapsyn to be crucial for binding to the dimerisation and docking domain of PKA type I. When expressed in live mouse muscle, a peptide encompassing the rapsyn α-helical sequence efficiently delocalises PKA type I from the neuromuscular junction. The same peptide, as well as a rapsyn construct lacking the α-helical domain, induces severe alteration of acetylcholine receptor turnover as well as fragmentation of synapses. This shows that rapsyn anchors PKA type I in close proximity to the postsynaptic membrane and suggests that this function is essential for synapse maintenance.


Asunto(s)
Proteína Quinasa Tipo I Dependiente de AMP Cíclico/metabolismo , Proteínas Musculares/metabolismo , Receptores Colinérgicos/metabolismo , Sinapsis/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Proteína Quinasa Tipo I Dependiente de AMP Cíclico/química , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Musculares/química , Proteínas Musculares/genética , Músculo Esquelético/inervación , Músculo Esquelético/metabolismo , Unión Neuromuscular/metabolismo , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido
2.
Proc Natl Acad Sci U S A ; 108(2): 621-5, 2011 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-21187406

RESUMEN

The nicotinic acetylcholine receptor of skeletal muscle is composed of five subunits that are assembled in a stepwise manner. Quality control mechanisms ensure that only fully assembled receptors reach the cell surface. Here, we show that Rer1, a putative Golgi-ER retrieval receptor, is involved in the biogenesis of acetylcholine receptors. Rer1 is expressed in the early secretory pathway in the myoblast line C2C12 and in mouse skeletal muscle, and up-regulated during myogenesis. Upon down-regulation of Rer1 in C2C12 cells, unassembled acetylcholine receptor α-subunits escape from the ER and are transported to the plasma membrane and lysosomes, where they are degraded. As a result, the amount of fully assembled receptor at the cell surface is reduced. In vivo Rer1 knockdown and genetic inactivation of one Rer1 allele lead to significantly smaller neuromuscular junctions in mice. Our data show that Rer1 is a functionally important unique factor that controls surface expression of muscle acetylcholine receptors by localizing unassembled α-subunits to the early secretory pathway.


Asunto(s)
Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Glicoproteínas de Membrana/fisiología , Músculos/metabolismo , Receptores Colinérgicos/metabolismo , Receptores Citoplasmáticos y Nucleares/fisiología , Proteínas Adaptadoras del Transporte Vesicular , Alelos , Animales , Regulación hacia Abajo , Lisosomas/metabolismo , Ratones , Ratones Transgénicos , Músculo Esquelético/metabolismo , Transporte de Proteínas , Receptores Citoplasmáticos y Nucleares/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Regulación hacia Arriba
3.
Proc Natl Acad Sci U S A ; 107(5): 2031-6, 2010 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-20133847

RESUMEN

Myosin V motor proteins facilitate recycling of synaptic receptors, including AMPA and acetylcholine receptors, in central and peripheral synapses, respectively. To shed light on the regulation of receptor recycling, we employed in vivo imaging of mouse neuromuscular synapses. We found that myosin Va cooperates with PKA on the postsynapse to maintain size and integrity of the synapse; this cooperation also regulated the lifetime of acetylcholine receptors. Myosin Va and PKA colocalized in subsynaptic enrichments. These accumulations were crucial for synaptic integrity and proper cAMP signaling, and were dependent on AKAP function, myosin Va, and an intact actin cytoskeleton. The neuropeptide and cAMP agonist, calcitonin-gene related peptide, rescued fragmentation of synapses upon denervation. We hypothesize that neuronal ligands trigger local activation of PKA, which in turn controls synaptic integrity and turnover of receptors. To this end, myosin Va mediates correct positioning of PKA in a postsynaptic microdomain, presumably by tethering PKA to the actin cytoskeleton.


Asunto(s)
Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , Placa Motora/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Proteínas de Anclaje a la Quinasa A/antagonistas & inhibidores , Proteínas de Anclaje a la Quinasa A/metabolismo , Actinas/metabolismo , Animales , Péptido Relacionado con Gen de Calcitonina/farmacología , AMP Cíclico/metabolismo , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/genética , Desnervación , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Proteínas Motoras Moleculares/metabolismo , Placa Motora/efectos de los fármacos , Cadenas Pesadas de Miosina/antagonistas & inhibidores , Miosina Tipo V/antagonistas & inhibidores , Plasticidad Neuronal , Receptores Colinérgicos/metabolismo , Transducción de Señal
4.
J Biol Chem ; 285(45): 34589-96, 2010 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-20813841

RESUMEN

The lifetime of nicotinic acetylcholine receptors (AChRs) in neuromuscular junctions (NMJs) is increased from <1 day to >1 week during early postnatal development. However, the exact timing of AChR stabilization is not known, and its correlation to the concurrent embryonic to adult AChR channel conversion, NMJ remodeling, and neuromuscular diseases is unclear. Using a novel time lapse in vivo imaging technology we show that replacement of the entire receptor population of an individual NMJ occurs end plate-specifically within hours. This makes it possible to follow directly in live animals changing stabilities of end plate receptors. In three different, genetically modified mouse models we demonstrate that the metabolic half-life values of synaptic AChRs increase from a few hours to several days after postnatal day 6. Developmental stabilization is independent of receptor subtype and apparently regulated by an intrinsic muscle-specific maturation program. Myosin Va, an F-actin-dependent motor protein, is also accumulated synaptically during postnatal development and thus could mediate the stabilization of end plate AChR.


Asunto(s)
Envejecimiento/fisiología , Placa Motora/metabolismo , Desarrollo de Músculos/fisiología , Receptores Nicotínicos/metabolismo , Sinapsis/metabolismo , Actinas/genética , Actinas/metabolismo , Animales , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Ratones , Ratones Noqueados , Placa Motora/genética , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , Enfermedades Neuromusculares/genética , Enfermedades Neuromusculares/metabolismo , Receptores Nicotínicos/genética , Sinapsis/genética
5.
PLoS One ; 6(6): e20524, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21655100

RESUMEN

BACKGROUND: The turnover of acetylcholine receptors at the neuromuscular junction is regulated in an activity-dependent manner. Upon denervation and under various other pathological conditions, receptor half-life is decreased. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate a novel approach to follow the kinetics of acetylcholine receptor lifetimes upon pulse labeling of mouse muscles with ¹²5I-α-bungarotoxin in vivo. In contrast to previous assays where residual activity was measured ex vivo, in our setup the same animals are used throughout the whole measurement period, thereby permitting a dramatic reduction of animal numbers at increased data quality. We identified three stability levels of acetylcholine receptors depending on the presence or absence of innervation: one pool of receptors with a long half-life of ∼13 days, a second with an intermediate half-life of ∼8 days, and a third with a short half-life of ∼1 day. Data were highly reproducible from animal to animal and followed simple exponential terms. The principal outcomes of these measurements were reproduced by an optical pulse-labeling assay introduced recently. CONCLUSIONS/SIGNIFICANCE: A novel assay to determine kinetics of acetylcholine receptor turnover with small animal numbers is presented. Our data show that nerve activity acts on muscle acetylcholine receptor stability by at least two different means, one shifting receptor lifetime from short to intermediate and another, which further increases receptor stability to a long lifetime. We hypothesize on possible molecular mechanisms.


Asunto(s)
Radioisótopos de Yodo/farmacocinética , Músculo Esquelético/metabolismo , Unión Neuromuscular/metabolismo , Receptores Colinérgicos/metabolismo , Algoritmos , Animales , Bungarotoxinas/metabolismo , Femenino , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Semivida , Radioisótopos de Yodo/administración & dosificación , Cinética , Masculino , Ratones , Microscopía Electrónica de Transmisión , Modelos Biológicos , Desnervación Muscular , Músculo Esquelético/inervación , Músculo Esquelético/ultraestructura , Unión Neuromuscular/ultraestructura , Sinapsis/metabolismo , Sinapsis/ultraestructura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA