RESUMEN
Niemann-Pick C disease (NPC) is an autosomal recessive genetic disorder resulting from mutation in one of two cholesterol transport genes: NPC1 or NPC2, causing accumulation of unesterified cholesterol, together with glycosphingolipids, within the endosomal/lysosomal compartment of cells. The result is a severe disease in both multiple peripheral organs and the central nervous system, causing neurodegeneration and early death. However, the pathophysiological mechanisms of NPC1 remain poorly understood. Recent studies have shown that the primary lysosomal defect found in fibroblasts from NPC1 patients is accompanied by a deregulation of mitochondrial organization and function. There is currently no cure for NPC1, but recently the potential of ß-cyclodextrin (ß-CD) for the treatment of the disease was discovered, which resulted in the redistribution of cholesterol from subcellular compartments to the circulation and increased longevity in an animal model of NPC1. Considering the above, the present work evaluated the in vitro therapeutic potential of ß-CD to reduce cholesterol in fibroblasts from NPC1 patients. ß-CD was used in its free and nanoparticulate form. We also evaluated the ß-CD potential to restore mitochondrial functions, as well as the beneficial combined effects of treatment with antioxidants N-Acetylcysteine (NAC) and Coenzyme Q10 (CoQ10). Besides, we evaluated oxidative and nitrative stress parameters in NPC1 patients. We showed that oxidative and nitrative stress could contribute to the pathophysiology of NPC1, as the levels of lipoperoxidation and the nitrite and nitrate levels were increased in these patients when compared to healthy individuals, as well as DNA damage. The nanoparticles containing ß-CD reduced the cholesterol accumulated in the NPC1 fibroblasts. This result was potentiated by the concomitant use of the nanoparticles with the antioxidants NAC and CoQ10 compared to those presented by healthy individuals cells Ì. In addition, treatments combining ß-CD nanoparticles and antioxidants could reduce mitochondrial oxidative stress, demonstrating advantages compared to free ß-CD. The results obtained are promising regarding the combined use of ß-CD loaded nanoparticles and antioxidants in the treatment of NPC1 disease.
Asunto(s)
Enfermedad de Niemann-Pick Tipo C , beta-Ciclodextrinas , Animales , Enfermedad de Niemann-Pick Tipo C/genética , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , beta-Ciclodextrinas/farmacología , beta-Ciclodextrinas/uso terapéutico , beta-Ciclodextrinas/metabolismo , Oxidación-Reducción , Mitocondrias/metabolismo , Colesterol/metabolismoRESUMEN
Temperature is an essential parameter in all biological systems, but information about the actual temperature in living cells is limited. Especially, in photothermal therapy, local intracellular temperature changes induce cell death but the local temperature gradients are not known. Highly sensitive nanothermometers would be required to measure and report local temperature changes independent of the intracellular environment, including pH or ions. Fluorescent nanodiamonds (ND) enable temperature sensing at the nanoscale independent of external conditions. Herein, we prepare ND nanothermometers coated with a nanogel shell and the photothermal agent indocyanine green serves as a heat generator and sensor. Upon irradiation, programmed cell death was induced in cancer cells with high spatial control. In parallel, the increase in local temperature was recorded by the ND nanothermometers. This approach represents a great step forward to record local temperature changes in different cellular environments inside cells and correlate these with thermal biology.
Asunto(s)
Nanodiamantes , Calefacción , Calor , Medicina de Precisión , TemperaturaRESUMEN
The programming of nanomaterials at molecular length-scales to control architecture and function represents a pinnacle in soft materials synthesis. Although elusive in synthetic materials, Nature has evolutionarily refined macromolecular synthesis with perfect atomic resolution across three-dimensional space that serves specific functions. We show that biomolecules, specifically proteins, provide an intrinsic macromolecular backbone for the construction of anisotropic brush polymers with monodisperse lengths via grafting-from strategy. Using human serum albumin as a model, its sequence was exploited to chemically transform a single cysteine, such that the expression of said functionality is asymmetrically placed along the backbone of the eventual brush polymer. This positional monofunctionalization strategy was connected with biotin-streptavidin interactions to demonstrate the capabilities for site-specific self-assembly to create higher ordered architectures. Supported by systematic experimental and computational studies, we envisioned that this macromolecular platform provides unique avenues and perspectives in macromolecular design for both nanoscience and biomedicine.
RESUMEN
ß-Cyclodextrin (ß-CD) is being considered a promising therapy for Niemann-Pick C (NPC) disease because of its ability to mobilise the entrapped cholesterol from lysosomes, however, a major limitation is its inability to cross the blood-brain barrier (BBB) and address the central nervous system (CNS) manifestations of the disease. Considering this, we aimed to design nanoparticles able to cross the BBB and deliver ß-CD into the CNS lysosomes. The physicochemical characteristics of ß-CD-loaded nanoparticles were evaluated by dynamic light scattering, small-angle X-ray scattering, and cryogenic transmission electron microscopy. The in vitro analyses were performed with NPC dermal fibroblasts and the ß-CD-loaded nanoparticles were tracked in vivo. The nanoparticles showed a mean diameter around 120 nm with a disordered bicontinuous inner structure. The nanoparticles did not cause decrease in cell viability, impairment in the antioxidant enzymes activity, damage to biomolecules or release of reactive species in NPC dermal fibroblasts; also, they did not induce genotoxicity or alter the mitochondrial function in healthy fibroblasts. The ß-CD-loaded nanoparticles were taken up by lysosomes reducing the cholesterol accumulated in NPC fibroblasts and reached the CNS of mice more intensely than other organs, demonstrating advantages compared to the free ß-CD. The results demonstrated the potential of the ß-CD-loaded nanoparticles in reducing the brain impairment of NPC.
Asunto(s)
Colesterol/metabolismo , Nanopartículas/administración & dosificación , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , beta-Ciclodextrinas/administración & dosificación , Animales , Transporte Biológico , Estudios de Casos y Controles , Niño , Femenino , Fibroblastos/efectos de los fármacos , Humanos , Lisosomas/metabolismo , Masculino , Ratones , Enfermedad de Niemann-Pick Tipo C/metabolismo , beta-Ciclodextrinas/farmacologíaRESUMEN
An inverse electron demand Diels-Alder reaction between tetrazine and trans-cyclooctene (TCO) holds great promise for protein modification and manipulation. Herein, we report the design and synthesis of a tetrazine-based disulfide rebridging reagent, which allows the site-selective installation of a tetrazine group into disulfide-containing peptides and proteins such as the hormone somatostatin (SST) and the antigen binding fragment (Fab) of human immunoglobulin G (IgG). The fast and efficient conjugation of the tetrazine modified proteins with three different TCO-containing substrates to form a set of bioconjugates in a site-selective manner was successfully demonstrated for the first time. Homogeneous, well-defined bioconjugates were obtained underlining the great potential of our method for fast bioconjugation in emerging protein therapeutics. The formed bioconjugates were stable against glutathione and in serum, and they maintained their secondary structure. With this work, we broaden the scope of tetrazine chemistry for site-selective protein modification to prepare well-defined SST and Fab conjugates with preserved structures and good stability under biologically relevant conditions.
Asunto(s)
Ciclooctanos/metabolismo , Disulfuros/metabolismo , Compuestos Heterocíclicos/química , Inmunoglobulina G/metabolismo , Ciclooctanos/química , Disulfuros/síntesis química , Disulfuros/química , Humanos , Inmunoglobulina G/química , Modelos Moleculares , Estructura Molecular , Procesamiento Proteico-PostraduccionalRESUMEN
Fluorescent nanodiamonds (fNDs) represent an emerging class of nanomaterials offering great opportunities for ultrahigh resolution imaging, sensing and drug delivery applications. Their biocompatibility, exceptional chemical and consistent photostability renders them particularly attractive for correlative light-electron microscopy studies providing unique insights into nanoparticle-cell interactions. Herein, we demonstrate a stringent procedure to image and quantify fNDs with a high contrast down to the single particle level in cells. Individual fNDs were directly visualized by energy-filtered transmission electron microscopy, that is, inside newly forming, early endosomal vesicles during their cellular uptake processes as well as inside cellular organelles such as a mitochondrion. Furthermore, we demonstrate the unequivocal identification, localization, and quantification of individual fNDs in larger fND clusters inside intracellular vesicles. Our studies are of great relevance to obtain quantitative information on nanoparticle trafficking and their various interactions with cells, membranes, and organelles, which will be crucial to design-improved sensors, imaging probes, and nanotherapeutics based on quantitative data.
Asunto(s)
Medios de Contraste/química , Nanodiamantes/química , Nanoestructuras/administración & dosificación , Rastreo Celular/métodos , Medios de Contraste/farmacología , Electrones , Colorantes Fluorescentes/administración & dosificación , Colorantes Fluorescentes/química , Células HeLa , Humanos , Microscopía Electrónica , Nanodiamantes/administración & dosificación , Nanodiamantes/ultraestructura , Nanoestructuras/química , Orgánulos/efectos de los fármacosRESUMEN
Nanotheranostics, combining diagnostics and therapy, has the potential to revolutionize treatment of neurological disorders. But one of the major obstacles for treating central nervous system diseases is the blood-brain barrier (BBB) preventing systemic delivery of drugs and optical probes into the brain. To overcome these limitations, nanodiamonds (NDs) are investigated in this study as they are a powerful sensing and imaging platform for various biological applications and possess outstanding stable far-red fluorescence, do not photobleach, and are highly biocompatible. Herein, fluorescent NDs encapsulated by a customized human serum albumin-based biopolymer (polyethylene glycol) coating (dcHSA-PEG) are taken up by target brain cells. In vitro BBB models reveal transcytosis and an additional direct cell-cell transport via tunneling nanotubes. Systemic application of dcHSA-NDs confirms their ability to cross the BBB in a mouse model. Tracking of dcHSA-NDs is possible at the single cell level and reveals their uptake into neurons and astrocytes in vivo. This study shows for the first time systemic NDs brain delivery and suggests transport mechanisms across the BBB and direct cell-cell transport. Fluorescent NDs are envisioned as traceable transporters for in vivo brain imaging, sensing, and drug delivery.
Asunto(s)
Encéfalo/metabolismo , Nanodiamantes/química , Animales , Astrocitos/metabolismo , Transporte Biológico , Barrera Hematoencefálica/metabolismo , Movimiento Celular , Supervivencia Celular , Endocitosis , Células Endoteliales/metabolismo , Fluorescencia , Ratones , Nanodiamantes/ultraestructura , Neuronas/metabolismo , Polietilenglicoles/química , Albúmina Sérica Humana/químicaRESUMEN
Cytometry plays a crucial role in characterizing cell properties, but its restricted optical window (400-850 nm) limits the number of stained fluorophores that can be detected simultaneously and hampers the study and utilization of short-wave infrared (SWIR; 900-1700 nm) fluorophores in cells. Here we introduce two SWIR-based methods to address these limitations: SWIR flow cytometry and SWIR image cytometry. We develop a quantification protocol for deducing cellular fluorophore mass. Both systems achieve a limit of detection of â¼0.1 fg cell-1 within a 30 min experimental time frame, using individualized, high-purity (6,5) single-wall carbon nanotubes as a model fluorophore and macrophage-like RAW264.7 as a model cell line. This high-sensitivity feature reveals that low-dose (6,5) serves as an antioxidant, and cell morphology and oxidative stress dose-dependently correlate with (6,5) uptake. Our SWIR cytometry holds immediate applicability for existing SWIR fluorophores and offers a solution to the issue of spectral overlapping in conventional cytometry.
Asunto(s)
Citometría de Flujo , Colorantes Fluorescentes , Rayos Infrarrojos , Nanotubos de Carbono , Ratones , Animales , Citometría de Flujo/métodos , Colorantes Fluorescentes/química , Nanotubos de Carbono/química , Células RAW 264.7 , Estrés Oxidativo , Macrófagos/metabolismo , Macrófagos/citologíaRESUMEN
Nanodiamonds (NDs) are emerging as a novel nanoparticle class with growing interest in medical applications. The surface coating of NDs can be modified by attaching binding ligands or imaging probes, turning them into multi-modal targeting agents. In this investigation, we assessed the targeting efficacy of octreotide-functionalized 68Ga-radiolabelled NDs for cancer imaging and compared it with the tumor uptake using [68Ga]Ga-DOTA-TOC. In vivo studies in mice bearing AR42J tumors demonstrated the highest accumulation of the radiolabeled functionalized NDs in the liver and spleen, with relatively low tumor uptake compared to [68Ga]Ga-DOTA-TOC. Our findings suggest that, within the scope of this study, functionalization did not enhance the tumor-targeting capabilities of NDs.
RESUMEN
Niemann-Pick type C1 (NP-C1) is a lysosomal storage disease (LSD) caused by mutations in NPC1 gene that lead to defective synthesis of the respective lysosomal transporter protein and cholesterol accumulation in late endosomes/lysosomes (LE/L) compartments, as well as glycosphingolipids GM2 and GM3 in the central nervous system (CNS). Clinical presentation varies according to the age of onset and includes visceral and neurological symptoms, such as hepatosplenomegaly and psychiatric disorders. Studies have been associating the pathophysiology of NP-C1 with oxidative damage to lipids and proteins, as well as evaluating the benefits of adjuvant therapy with antioxidants for this disease. In this work, we evaluated the DNA damage in fibroblasts culture from patients with NP-C1 treated with miglustat, as well as the in vitro effect of the antioxidant compounds N-acetylcysteine (NAC) and Coenzyme Q10 (CoQ10), using the alkaline comet assay. Our preliminary results demonstrate that NP-C1 patients have increased DNA damage compared to healthy individuals and that the treatments with antioxidants can mitigate it. DNA damage may be due to an increase in reactive species since it has been described that NP-C1 patients have increased peripheral markers of damage to other biomolecules. Our study suggests that NP-C1 patients could benefit from the use of adjuvant therapy with NAC and CoQ10, which should be better evaluated in a future clinical trial.
Asunto(s)
Enfermedad de Niemann-Pick Tipo C , Humanos , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Enfermedad de Niemann-Pick Tipo C/genética , Enfermedad de Niemann-Pick Tipo C/metabolismo , Acetilcisteína/farmacología , Acetilcisteína/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Daño del ADNRESUMEN
PURPOSE: Nanodiamonds (NDs) represent a new class of nanoparticles and have gained increasing interest in medical applications. Modifying the surface coating by attaching binding ligands or imaging probes can transform NDs into multi-modal targeting probes. This study evaluated the biokinetics and biodistribution of 68Ga-radiolabelled NDs in a xenograft model. PROCEDURES: NDs were coated with an albumin-derived copolymer modified with desferrioxamine to provide a chelator for radiolabeling. In vivo studies were conducted in AR42J tumor-bearing CD1 mice to evaluate biodistribution and tumor accumulation of the NDs. RESULTS: Coated NDs were successfully radiolabeled using 68Ga at room temperature with radiolabeling efficiencies up to 91.8 ± 3.2 % as assessed by radio-TLC. In vivo studies revealed the highest accumulation in the liver and spleen, whereas tumor radioactivity concentration was low. CONCLUSIONS: Radiolabeling of coated NDs could be achieved. However, the obtained results indicate these coated NDs' limitations in their biodistribution within the conducted studies.
Asunto(s)
Nanodiamantes , Neoplasias , Humanos , Ratones , Animales , Radioisótopos de Galio , Distribución Tisular , PolímerosRESUMEN
Nanodiamonds (NDs) have high potential as a drug carrier and in combination with nitrogen vacancies (NV centers) for highly sensitive MR-imaging after hyperpolarization. However, little remains known about their physiological properties in vivo. PET imaging allows further evaluation due to its quantitative properties and high sensitivity. Thus, we aimed to create a preclinical platform for PET and MR evaluation of surface-modified NDs by radiolabeling with both short- and long-lived radiotracers. Serum albumin coated NDs, functionalized with PEG groups and the chelator deferoxamine, were labeled either with zirconium-89 or gallium-68. Their biodistribution was assessed in two different mouse strains. PET scans were performed at various time points up to 7 d after i.v. injection. Anatomical correlation was provided by additional MRI in a subset of animals. PET results were validated by ex vivo quantification of the excised organs using a gamma counter. Radiolabeled NDs accumulated rapidly in the liver and spleen with a slight increase over time, while rapid washout from the blood pool was observed. Significant differences between the investigated radionuclides were only observed for the spleen (1 h). In summary, we successfully created a preclinical PET and MR imaging platform for the evaluation of the biodistribution of NDs over different time scales.
RESUMEN
With the advent of chemical strategies that allow the design of smart bioconjugates, peptide- and protein-drug conjugates are emerging as highly efficient therapeutics to overcome limitations of conventional treatment, as exemplified by antibody-drug conjugates (ADCs). While targeting peptides serve similar roles as antibodies to recognize overexpressed receptors on diseased cell surfaces, peptide-drug conjugates suffer from poor stability and bioavailability due to their low molecular weights. Through a combination of a supramolecular protein-based assembly platform and a pH-responsive linker, the authors devise herein the convenient assembly of a trivalent protein-drug conjugate. The conjugate should ideally possess distinct features of ADCs such as 1) recognition sites that recognize cell receptor and are arranged on 2) distinct locations on a high molecular weight protein scaffold, 3) a stimuli-responsive linker, as well as 4) an attached payload such as a drug molecule. These AD-like conjugates target cancer cells that overexpress somatostatin receptors, can enable controlled release in the microenvironment of cancer cells through a new pH-responsive biotin linker, and exhibit stability in biological media.
Asunto(s)
Antineoplásicos , Inmunoconjugados , Anticuerpos Monoclonales/química , Antígenos , Antineoplásicos/química , Biotina , Concentración de Iones de Hidrógeno , Inmunoconjugados/química , Inmunoconjugados/farmacologíaRESUMEN
The generation of specific humoral and cellular immune responses plays a pivotal role in the development of effective vaccines against tumors. Especially the presence of antigen-specific, cytotoxic T cells influences the outcome of therapeutic cancer vaccinations. Different strategies, ranging from delivering antigen-encoding mRNAs to peptides or full antigens, are accessible but often suffer from insufficient immunogenicity and require immune-boosting adjuvants as well as carrier platforms to ensure stability and adequate retention. Here, we introduce a pH-responsive nanogel platform as a two-component antitumor vaccine that is safe for intravenous application and elicits robust immune responses in vitro and in vivo. The underlying chemical design allows for straightforward covalent attachment of a model antigen (ovalbumin) and an immune adjuvant (imidazoquinoline-type TLR7/8 agonist) onto the same nanocarrier system. In addition to eliciting antigen-specific T and B cell responses that outperform mixtures of individual components, our two-component nanovaccine leads in prophylactic and therapeutic studies to an antigen-specific growth reduction of different tumors expressing ovalbumin intracellularly or on their surface. Regarding the versatile opportunities for functionalization, our nanogels are promising for the development of highly customized and potent nanovaccines.
Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Receptor Toll-Like 7 , Receptor Toll-Like 8 , Adyuvantes Inmunológicos , Animales , Antígenos , Inmunidad Celular , Ratones , Ratones Endogámicos C57BL , Nanogeles , Neoplasias/terapia , Ovalbúmina , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 8/agonistasRESUMEN
Proteins have attracted increasing attention as biopharmaceutics and diagnostics due to their high specificity, biocompatibility, and biodegradability. The biopharmaceutical sector in particular is experiencing rapid growth, which has led to an increase in the production and sale of protein drugs and diagnostics over the last two decades. Since the first-generation biopharmaceutics dominated by native proteins, both recombinant and chemical technologies have evolved and transformed the outlook of this rapidly developing field. This review article presents updates on the fabrication of covalent and supramolecular fusion hybrids, as well as protein-polymer hybrids using solid-phase approaches that hold great promise for preparing protein hybrids with precise control at the macromolecular level to incorporate additional features. In addition, the applications of the resultant protein hybrids in medicine and diagnostics are highlighted where possible.
Asunto(s)
Proteínas/química , Técnicas de Síntesis en Fase Sólida/métodos , Anticuerpos/química , Anticuerpos/metabolismo , Sustancias Macromoleculares/síntesis química , Sustancias Macromoleculares/química , Preparaciones Farmacéuticas/síntesis química , Preparaciones Farmacéuticas/química , Polietilenglicoles/química , Polímeros/química , Multimerización de Proteína , Proteínas/síntesis químicaRESUMEN
Long-term tracking of nanoparticles to resolve intracellular structures and motions is essential to elucidate fundamental parameters as well as transport processes within living cells. Fluorescent nanodiamond (ND) emitters provide cell compatibility and very high photostability. However, high stability, biocompatibility, and cellular uptake of these fluorescent NDs under physiological conditions are required for intracellular applications. Herein, highly stable NDs encapsulated with Cowpea chlorotic mottle virus capsid proteins (ND-CP) are prepared. A thin capsid protein layer is obtained around the NDs, which imparts reactive groups and high colloidal stability, while retaining the opto-magnetic properties of the coated NDs as well as the secondary structure of CPs adsorbed on the surface of NDs. In addition, the ND-CP shows excellent biocompatibility both in vitro and in vivo. Long-term 3D trajectories of the ND-CP with fine spatiotemporal resolutions are recorded; their intracellular motions are analyzed by different models, and the diffusion coefficients are calculated. The ND-CP with its brilliant optical properties and stability under physiological conditions provides us with a new tool to advance the understanding of cell biology, e.g., endocytosis, exocytosis, and active transport processes in living cells as well as intracellular dynamic parameters.
Asunto(s)
Materiales Biocompatibles/química , Bromovirus/química , Proteínas de la Cápside/análisis , Fluorescencia , Nanodiamantes/química , Proteínas de la Cápside/metabolismo , Cápsulas/química , Tamaño de la PartículaRESUMEN
Dynamic covalent chemistry is a versatile and powerful tool that integrates both stable chemical bonds and stimulus responsiveness into the construction of smart biotherapeutics. With minimalistic molecular design, a dynamic covalent protein assembly that incorporates selective targeting and intracellular release upon pH stimulus is presented. The construct comprises an active enzymatic protein core (cytochrome c) self-assembled with cancer cell targeting motifs (somatostatin) through boronic acid/salicylhydroxamate chemistry. The bioorthogonal assembly takes place rapidly under neutral aqueous conditions while the release of the protein is initiated under acidic conditions found within cellular vesicles during uptake. By demonstrating that these modular components act in synergy, we show the broad applicability of such chemical strategies to advance the frontier of modern nanomedicine.
Asunto(s)
Ácidos Borónicos/química , Citocromos c/metabolismo , Salicilamidas/química , Somatostatina/metabolismo , Células A549 , Calcio/metabolismo , Citocromos c/química , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/química , Humanos , Concentración de Iones de Hidrógeno , Microscopía Confocal , Nanomedicina , Somatostatina/químicaRESUMEN
Very small polydopamine (PDA) polyethylene glycol (PEG) crosslinked copolymer (PDA-PEG) nanoparticles have been prepared following a convenient one-step procedure in aqueous solution. Particle sizes and colloidal stabilities have been optimized by varying PEG in view of chain length and end group functionalities. In particular, amine-terminated PEG3000 [PEG3000(NH2)2] reacted with polydopamine intermediates so that very small, crosslinked PDA-PEG nanoparticles with sizes of less than 50 nm were formed. These nanoparticles remained stable in buffer solution and no sedimentation occurred. Chemical functionalization was straight-forward as demonstrated by the attachment of fluorescent dyes. The PDA-PEG nanoparticles revealed efficient cellular uptake via endocytosis and high cytocompatibility, thus rendering them attractive candidates for cell imaging or for drug delivery applications.
Asunto(s)
Indoles/síntesis química , Nanopartículas/química , Polietilenglicoles/síntesis química , Polímeros/síntesis química , Coloides/química , Colorantes Fluorescentes/metabolismo , Fenómenos Químicos Orgánicos , Tamaño de la PartículaRESUMEN
Inorganic nanoparticles that mimic the activity of enzymes are promising systems for biomedical applications. However, they cannot distinguish between healthy and damaged tissues, which could cause undesired effects. Natural enzymes avoid this drawback via activation triggered by specific biochemical events in the body. Inspired by this strategy, we proposed an artificial cerium-based proenzyme system that could be activated to a superoxide dismutase-like form using H2O2 as the trigger. To achieve this goal, an innovative and easy strategy to synthesize Ce(OH)3 nanoparticles as artificial proenzymes was developed using a lyotropic liquid crystal composed of phytantriol, which was essential to maintain their stability at physiological pH. The transmission electron microscopy measurements showed that the Ce(OH)3 nanoparticles were as small as 2 nm. The nanoparticles were fitted into the tiny aqueous channels of the liquid crystal matrix, which presented a Pn3m space group. X-ray absorption near edge structure measurements were used to determine the Ce(iii) fraction of the proenzyme-like nanoparticles, which was around 85%. The Ce(iii) fraction dramatically dropped to around 5% after contact with H2O2 because of the conversion of Ce(OH)3 to CeO(2-x) nanoparticles. The CeO(2-x) nanoparticles showed superoxide dismutase-like activity in contrast to the inactive Ce(OH)3 form. The proof of concept presented in this work opens up new possibilities for using nanoparticles as artificial proenzymes that are activated by a biochemical trigger in vivo.
RESUMEN
Lysosomal Storage Disorders (LSDs) are characterized by an abnormal accumulation of substrates within the lysosome and comprise more than 50 genetic disorders with a frequency of 1:5000 live births. Nanotechnology may be a promising way to circumvent the drawbacks of the current therapies for lysosomal diseases. The blood circulation time and bioavailability of the enzymes or drugs could be improved by inserting them in nanocarriers, which could decrease and/or avoid the need of frequent intravenous infusions along with the minimization or elimination of associated immunogenic responses. Considering the exposed, we aimed to build monoolein-based nanoparticles stabilized by polysorbate 80 as a smart platform able to reach the central nervous system (CNS) to deliver drugs or enzymes inside lysosomes. We developed and characterized the nanoparticles by dynamic light scattering (DLS), small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (Cryo-TEM). The nanoparticles showed a diameter of 115â¯nm, which is compatible with in vivo application. The SAXS patterns of the formulations displayed a single broad correlation peak that was fitted to the Teubner-Strey model confirming that disordered bicontinuous structures were obtained. Cryo-TEM images corroborated this finding and showed nanoparticles with size values that are similar to those determined by DLS. Furthermore, the nanoparticles did not present cytotoxicity when they were incubated with human fibroblasts, and demonstrated hemolytic activity proportional to the negative control, proving to be safe for parenteral administration. Through the use of a fluorescent dye to track the nanoparticles inside the cell, we demonstrated that they reached lysosomes after 1â¯h of treatment. More interestingly, the fluorescent dye was detected in the CNS of mice just after 3â¯h of treatment. The nanoparticles show great potential to improve the treatment of LSDs with brain impairment, acting as a smart platform to targeted delivery of drugs or enzymes.