Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Nature ; 582(7813): 506-510, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32581384

RESUMEN

Gratings1 and holograms2 use patterned surfaces to tailor optical signals by diffraction. Despite their long history, variants with remarkable functionalities continue to be developed3,4. Further advances could exploit Fourier optics5, which specifies the surface pattern that generates a desired diffracted output through its Fourier transform. To shape the optical wavefront, the ideal surface profile should contain a precise sum of sinusoidal waves, each with a well defined amplitude, spatial frequency and phase. However, because fabrication techniques typically yield profiles with at most a few depth levels, complex 'wavy' surfaces cannot be obtained, limiting the straightforward mathematical design and implementation of sophisticated diffractive optics. Here we present a simple yet powerful approach to eliminate this design-fabrication mismatch by demonstrating optical surfaces that contain an arbitrary number of specified sinusoids. We combine thermal scanning-probe lithography6-8 and templating9 to create periodic and aperiodic surface patterns with continuous depth control and sub-wavelength spatial resolution. Multicomponent linear gratings allow precise manipulation of electromagnetic signals through Fourier-spectrum engineering10. Consequently, we overcome a previous limitation in photonics by creating an ultrathin grating that simultaneously couples red, green and blue light at the same angle of incidence. More broadly, we analytically design and accurately replicate intricate two-dimensional moiré patterns11,12, quasicrystals13,14 and holograms15,16, demonstrating a variety of previously unattainable diffractive surfaces. This approach may find application in optical devices (biosensors17, lasers18,19, metasurfaces4 and modulators20) and emerging areas in photonics (topological structures21, transformation optics22 and valleytronics23).

2.
Chemistry ; 30(1): e202302553, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37815001

RESUMEN

We have used confocal laser scanning microscopy on the small, fluorescent resorufin dye molecule to visualize molecular accessibility and diffusion in the hierarchical, anisotropic pore structure of large (~10 µm-sized) zeolite-ß crystals. The resorufin dye is widely used in life and materials science, but only in its deprotonated form because the protonated molecule is barely fluorescent in aqueous solution. In this work, we show that protonated resorufin is in fact strongly fluorescent when confined within zeolite micropores, thus enabling fluorescence microimaging experiments. We find that J-aggregation guest-guest interactions lead to a decrease in the measured fluorescence intensity that can be prevented by using non-fluorescent spacer molecules. We characterized the pore space by introducing resorufin from the outside solution and following its diffusion into zeolite-ß crystals. The eventual homogeneous distribution of resorufin molecules throughout the zeolite indicates a fully accessible pore network. This enables the quantification of the diffusion coefficient in the straight pores of zeolite-ß without the need for complex analysis, and we found a value of 3×10-15  m2  s-1 . Furthermore, we saw that diffusion through the straight pores of zeolite-ß is impeded when crossing the boundaries between zeolite subunits.

3.
Chemistry ; 30(1): e202303877, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38088555

RESUMEN

Invited for the cover of this issue is the group of Professor Bert Weckhuysen at Utrecht University. The image depicts the change in fluorescence color of a resorufin dye molecule when it is protonated and confined inside the micropores of zeolite-ß. Read the full text of the article at 10.1002/chem.202302553.

4.
Nano Lett ; 23(12): 5417-5423, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37290051

RESUMEN

Semiconductor nanocrystal emission polarization is a crucial probe of nanocrystal physics and an essential factor for nanocrystal-based technologies. While the transition dipole moment for the lowest excited state to ground state transition is well characterized, the dipole moment of higher multiexcitonic transitions is inaccessible via most spectroscopy techniques. Here, we realize direct characterization of the doubly excited-state relaxation transition dipole by heralded defocused imaging. Defocused imaging maps the dipole emission pattern onto a fast single-photon avalanche diode detector array, allowing the postselection of photon pairs emitted from the biexciton-exciton emission cascade and resolving the differences in transition dipole moments. Type-I1/2 seeded nanorods exhibit higher anisotropy of the biexciton-to-exciton transition compared to the exciton-to-ground state transition. In contrast, type-II seeded nanorods display a reduction of biexciton emission anisotropy. These findings are rationalized in terms of an interplay between the transient dynamics of the refractive index and the excitonic fine structure.

5.
Nano Lett ; 23(14): 6560-6566, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37450686

RESUMEN

Ongoing developments in science and technology require temperature measurements at increasingly higher spatial resolutions. Nanocrystals with temperature-sensitive luminescence are a popular thermometer for these applications offering high precision and remote read-out. Here, we demonstrate that ratiometric luminescence thermometry experiments may suffer from systematic errors in nanostructured environments. We place lanthanide-based luminescent nanothermometers at controlled distances of up to 600 nm from a Au surface. Although this geometry supports no absorption or scattering resonances, distortion of the emission spectra of the thermometers due to the modified density of optical states results in temperature read-out errors of up to 250 K. Our simple analytical model explains the effects of thermometer emission frequencies, experimental equipment, and sample properties on the magnitude of the errors. We discuss the relevance of our findings in several experimental scenarios. Such errors do not always occur, but they are expected in measurements near reflecting interfaces or scattering objects.

6.
Nano Lett ; 23(18): 8697-8703, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37672486

RESUMEN

Indium phosphide colloidal quantum dots (CQDs) are the main alternative for toxic and restricted Cd based CQDs for lighting and display applications. Here we systematically report on the size-dependent optical absorption, ensemble, and single particle photoluminescence (PL) and biexciton lifetimes of core-only InP CQDs. This systematic study is enabled by improvements in the synthesis of InP CQDs to yield a broad size series of monodisperse core-only InP CQDs with narrow absorption and PL line width and significant PL quantum yield.

7.
Angew Chem Int Ed Engl ; : e202409503, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973416

RESUMEN

The formation of carbon deposits is a major deactivation pathway for solid catalysts. Studying coking on industrially relevant catalysts is, however, often challenging due to the sample heterogeneity. That is especially true for zeolite-containing catalysts where fluorescence often hampers their characterization with Raman spectroscopy. We turned this disadvantage into an advantage and combined Raman and fluorescence (lifetime) microscopy to study the coking behavior of an equilibrium catalyst material used for fluid catalytic cracking of hydrocarbons. The results presented illustrate that this approach can yield new insights in the physicochemical processes occurring within zeolite-containing catalyst particles during their coking process. Ex situ analyses of single catalyst particles revealed considerable intra-sample heterogeneities. The sample-averaged Raman spectra showed a higher degree of graphitization when the sample was exposed to more hexane, while the sample-averaged fluorescence lifetime showed no significant trend. Simultaneous in situ Raman and fluorescence (lifetime) microscopy, used to follow the coking of single particles, gave more insights in the changing fluorescence dynamics. The rise and decline of the average fluorescence lifetime suggested the prolonged presence of smaller coke species that are quenched more and more by adjacent larger polyaromatics acting as Förster-resonance-energy-transfer acceptors.

8.
Angew Chem Int Ed Engl ; 63(4): e202314528, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38037863

RESUMEN

Porous solids often contain complex pore networks with pores of various sizes. Tracking individual fluorescent probes as they diffuse through porous materials can be used to characterize pore networks at tens of nanometers resolution. However, understanding the motion behavior of fluorescent probes in confinement is crucial to reliably derive pore network properties. Here, we introduce well-defined lithography-made model pores developed to study probe behavior in confinement. We investigated the influence of probe-host interactions on diffusion and trapping of confined single-emitter quantum-dot probes. Using the pH-responsiveness of the probes, we were able to largely suppress trapping at the pore walls. This enabled us to define experimental conditions for mapping of the accessible pore space of a one-dimensional pore array as well as a real-life polymerization-catalyst-support particle.

9.
Angew Chem Int Ed Engl ; 62(28): e202305086, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37170964

RESUMEN

ß-NaYF4 nanocrystals are a popular class of optical materials. They can be doped with optically active lanthanide ions and shaped into core-multi-shell geometries with controlled dopant distributions. Here, we follow the synthesis of ß-NaYF4 nanocrystals from α-NaYF4 precursor particles using in situ small-angle and wide-angle X-ray scattering and ex situ electron microscopy. We observe an evolution from a unimodal particle size distribution to bimodal, and eventually back to unimodal. The final size distribution is narrower in absolute numbers than the initial distribution. These peculiar growth dynamics happen in large part before the α-to-ß phase transformation. We propose that the splitting of the size distribution is caused by variations in the reactivity of α-NaYF4 precursor particles, potentially due to inter-particle differences in stoichiometry. Rate equation modeling confirms that a continuous distribution of reactivities can result in the observed particle growth dynamics.

10.
J Am Chem Soc ; 144(18): 8096-8105, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35482030

RESUMEN

The growth of two-dimensional platelets of the CdX family (X = S, Se, or Te) in an organic solvent requires the presence of both long- and short-chain ligands. This results in nanoplatelets of atomically precise thickness and long-chain ligand-stabilized Cd top and bottom surfaces. The platelets show a bright and spectrally pure luminescence. Despite the enormous interest in CdX platelets for optoelectronics, the growth mechanism is not fully understood. Riedinger et al. studied the reaction without a solvent and showed the favorable role for short-chain carboxylates for growth in two dimensions. Their model, based on the total energy of island nucleation, shows favored side facet growth versus growth on the top and bottom surfaces. However, several aspects of the synthesis under realistic conditions are not yet understood: Why are both short- and long-chain ligands required to obtain platelets? Why does the synthesis result in both isotropic nanocrystals and platelets? At which stage of the reaction is there bifurcation between isotropic and 2D growth? Here, we report an in situ study of the CdSe nanoplatelet reaction under practical synthesis conditions. We show that without short-chain ligands, both isotropic and mini-nanoplatelets form in the early stage of the process. However, most remaining precursors are consumed in isotropic growth. Addition of acetate induces a dramatic shift toward nearly exclusive 2D growth of already existing mini-nanoplatelets. Hence, although myristate stabilizes mini-nanoplatelets, mature nanoplatelets only grow by a subtle interplay between myristate and acetate, the latter catalyzes fast lateral growth of the side facets of the mini-nanoplatelets.


Asunto(s)
Compuestos de Cadmio , Compuestos de Selenio , Acetatos , Compuestos de Cadmio/química , Ligandos , Miristatos , Ácido Mirístico , Compuestos de Selenio/química , Solventes , Análisis Espectral , Rayos X
11.
Nature ; 589(7841): 204-205, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33442036
12.
Nano Lett ; 21(13): 5760-5766, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34133188

RESUMEN

Broadening of multiexciton emission from colloidal quantum dots (QDs) at room temperature is important for their use in high-power applications, but an in-depth characterization has not been possible until now. We present and apply a novel spectroscopic method to quantify the biexciton line width and biexciton binding energy of single CdSe/CdS/ZnS colloidal QDs at room temperature. In our method, which we term "cascade spectroscopy", we select emission events from the biexciton cascade and reconstruct their spectrum. The biexciton has an average emission line width of 86 meV on the single-QD scale, similar to that of the exciton. Variations in the biexciton repulsion (Eb = 4.0 ± 3.1 meV; mean ± standard deviation of 15 QDs) are correlated with but are more narrowly distributed than variations in the exciton energy (10.0 meV standard deviation). Using a simple quantum-mechanical model, we conclude that inhomogeneous broadening in our sample is primarily due to variations in the CdS shell thickness.


Asunto(s)
Compuestos de Cadmio , Puntos Cuánticos , Compuestos de Selenio , Análisis Espectral , Temperatura
13.
Nano Lett ; 21(1): 658-665, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33395305

RESUMEN

The luminescence of CuInS2 quantum dots (QDs) is slower and spectrally broader than that of many other types of QDs. The origin of this anomalous behavior is still under debate. Single-QD experiments could help settle this debate, but studies by different groups have yielded conflicting results. Here, we study the photophysics of single core-only CuInS2 and core/shell CuInS2/CdS QDs. Both types of single QDs exhibit broad PL spectra with fluctuating peak position and single-exponential photoluminescence decay with a slow but fluctuating lifetime. Spectral diffusion of CuInS2-based QDs is qualitatively and quantitatively different from CdSe-based QDs. The differences reflect the dipole moment of the CuInS2 excited state and hole localization on a preferred site in the QD. Our results unravel the highly dynamic photophysics of CuInS2 QDs and highlight the power of the analysis of single-QD property fluctuations.

14.
Nano Lett ; 21(6): 2487-2496, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33661650

RESUMEN

Hot-injection synthesis is renowned for producing semiconductor nanocolloids with superb size dispersions. Burst nucleation and diffusion-controlled size focusing during growth have been invoked to rationalize this characteristic yet experimental evidence supporting the pertinence of these concepts is scant. By monitoring a CdSe synthesis in-situ with X-ray scattering, we find that nucleation is an extended event that coincides with growth during 15-20% of the reaction time. Moreover, we show that size focusing outpaces predictions of diffusion-limited growth. This observation indicates that nanocrystal growth is dictated by the surface reactivity, which drops sharply for larger nanocrystals. Kinetic reaction simulations confirm that this so-called superfocusing can lengthen the nucleation period and promote size focusing. The finding that narrow size dispersions can emerge from the counteracting effects of extended nucleation and reaction-limited size focusing ushers in an evidence-based perspective that turns hot injection into a rational scheme to produce monodisperse semiconductor nanocolloids.

15.
Angew Chem Int Ed Engl ; 61(5): e202114388, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34788496

RESUMEN

The development of improved zeolite materials for applications in separation and catalysis requires understanding of mass transport. Herein, diffusion of single molecules is tracked in the straight and sinusoidal channels of the industrially relevant ZSM-5 zeolites using a combination of single-molecule localization microscopy and uniformly oriented zeolite thin films. Distinct motion behaviors are observed in zeolite channels with the same geometry, suggesting heterogeneous guest-host interactions. Quantification of the diffusion heterogeneities in the sinusoidal and straight channels suggests that the geometry of zeolite channels dictates the mobility and motion behavior of the guest molecules, resulting in diffusion anisotropy. The study of hierarchical zeolites shows that the addition of secondary pore networks primarily enhances the diffusivity of sinusoidal zeolite channels, and thus alleviating the diffusion limitations of microporous zeolites.

16.
Angew Chem Int Ed Engl ; 61(52): e202211991, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36328981

RESUMEN

Often the reactor or the reaction medium temperature is reported in the field of heterogeneous catalysis, even though it could vary significantly from the reactive catalyst temperature. The influence of the catalyst temperature on the catalytic performance and vice versa is therefore not always accurately known. We here apply EuOCl as both solid catalyst and thermometer, allowing for operando temperature determination. The interplay between reaction conditions and the catalyst temperature dynamics is studied. A maximum temperature difference between the catalyst and oven of +16 °C was observed due to the exothermicity of the methane oxychlorination reaction. Heat dissipation by radiation appears dominating compared to convection in this set-up, explaining the observed uniform catalyst bed temperature. Application of operando catalyst thermometry could provide a deeper mechanistic understanding of catalyst performances and allow for safer process operation in chemical industries.

17.
Nano Lett ; 20(8): 5814-5820, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32589429

RESUMEN

Colloidal nanoplatelets (NPLs) are atomically flat, quasi-two-dimensional particles of a semiconductor. Despite intense interest in their optical properties, several observations concerning the emission of CdSe NPLs remain puzzling. While their ensemble photoluminescence spectrum consists of a single narrow peak at room temperature, two distinct emission features appear at temperatures below ∼160 K. Several competing explanations for the origin of this two-color emission have been proposed. Here, we present temperature- and time-dependent experiments demonstrating that the two emission colors are due to two subpopulations of uncharged and charged NPLs. We study dilute films of isolated NPLs, thus excluding any explanation relying on collective effects due to NPL stacking. Temperature-dependent measurements explain that trion emission from charged NPLs is bright at cryogenic temperatures, while temperature activation of nonradiative Auger recombination quenches the trion emission above 160 K. Our findings clarify many of the questions surrounding the photoluminescence of CdSe NPLs.

18.
Nano Lett ; 19(12): 8495-8502, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31686517

RESUMEN

While ensembles of CdSe nanoplatelets (NPLs) show remarkably narrow photoluminescence line widths at room temperature, adding a CdS shell to increase their fluorescence efficiency and photostability causes line width broadening. Moreover, ensemble emission spectra of CdSe/CdS core/shell NPLs become strongly asymmetric at cryogenic temperatures. If the origin of these effects were understood, this could potentially lead to stable core/shell NPLs with narrower emission, which would be advantageous for applications. To move in this direction, we report time-resolved emission spectra of individual CdSe/CdS core/shell NPLs at 4 K. We observe surprisingly complex emission spectra that contain multiple spectrally narrow emission features that change during the experiment. With machine-learning algorithms, we can extract characteristic peak energy differences in these spectra. We show that they are consistent with electron "shakeup lines" from negatively charged trions. In this process, an electron-hole pair recombines radiatively but gives part of its energy to the remaining electron by exciting it into a higher single-electron level. This "shakeup" mechanism is enabled in our NPLs due to strong exciton binding and weak lateral confinement of the charge carriers. Time-resolved single-photon-counting measurements and numerical calculations suggest that spectral jumps in the emission features originate from fluctuations in the confinement potential caused by microscopic structural changes on the NPL surface (e.g., due to mobile surface charges). Our results provide valuable insights into line width broadening mechanisms in colloidal NPLs.

19.
Nano Lett ; 19(1): 108-115, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30516054

RESUMEN

Exciton polaritons are hybrid light-matter quasiparticles that can serve as coherent light sources. Motivated by applications, room-temperature realization of polaritons requires narrow, excitonic transitions with large transition dipoles. Such transitions must then be strongly coupled to an electromagnetic mode confined in a small volume. While much work has explored polaritons in organic materials, semiconductor nanocrystals present an alternative excitonic system with enhanced photostability and spectral tunability. In particular, quasi-two-dimensional nanocrystals known as nanoplatelets (NPLs) exhibit intense, spectrally narrow excitonic transitions useful for polariton formation. Here, we place CdSe NPLs on silver hole arrays to demonstrate exciton-plasmon polaritons at room temperature. Angle-resolved reflection spectra reveal Rabi splittings up to 149 meV for the polariton states. We observe bright, polarized emission arising from the lowest polariton state. Furthermore, we assess the dependence of the Rabi splitting on the hole-array pitch and the number N of NPLs. While the pitch determines the in-plane momentum for which strong coupling is observed, it does not affect the size of the splitting. The Rabi splitting first increases with NPL film thickness before eventually saturating. Instead of the commonly used [Formula: see text] dependence, we develop an analytical expression that includes the transverse confinement of the plasmon modes to describe the measured Rabi splitting as a function of NPL film thickness.

20.
Nano Lett ; 18(9): 5867-5874, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30095918

RESUMEN

The dynamics of photoluminescence (PL) from nanocrystal quantum dots (QDs) is significantly affected by the reversible trapping of photoexcited charge carriers. This process occurs after up to 50% of the absorption events, depending on the type of QD considered, and can extend the time between the photoexcitation and relaxation of the QD by orders of magnitude. Although many optoelectronic applications require QDs assembled into a QD solid, until now, reversible trapping has been studied only in (ensembles of) spatially separated QDs. Here, we study the influence of reversible trapping on the excited-state dynamics of CdSe/CdS core/shell QDs when they are assembled into close-packed "supraparticles". Time- and spectrally resolved photoluminescence (PL) measurements reveal competition among spontaneous emission, reversible charge-carrier trapping, and Förster resonance energy transfer between the QDs. While Förster transfer causes the PL to red-shift over the first 20-50 ns after excitation, reversible trapping stops and even reverses this trend at later times. We can model this behavior with a simple kinetic Monte Carlo simulation by considering that charge-carrier trapping leaves the QDs in a state with zero oscillator strength in which no energy transfer can occur. Our results highlight that reversible trapping significantly affects the energy and charge-carrier dynamics for applications in which QDs are assembled into a QD solid.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA