RESUMEN
Skin diseases such as psoriasis (Ps) and psoriatic arthritis (PsA) are immune-mediated inflammatory diseases. Overlap of autoinflammatory and autoimmune conditions hinders diagnoses and identifying personalized patient treatments due to different psoriasis subtypes and the lack of verified biomarkers. Recently, proteomics and metabolomics have been intensively investigated in a broad range of skin diseases with the main purpose of identifying proteins and small molecules involved in the pathogenesis and development of the disease. This review discusses proteomics and metabolomics strategies and their utility in research and clinical practice in psoriasis and psoriasis arthritis. We summarize the studies, from in vivo models conducted on animals through academic research to clinical trials, and highlight their contribution to the discovery of biomarkers and targets for biological drugs.
Asunto(s)
Artritis Psoriásica , Psoriasis , Animales , Artritis Psoriásica/metabolismo , Proteómica , Psoriasis/metabolismo , Metabolómica , Biomarcadores/metabolismoRESUMEN
Recent studies revealed that the activation of serotonergic 5-HT1A and muscarinic M1, M4, or M5 receptors prevent MK-801-induced cognitive impairments in animal models. In the present study, the effectiveness of the simultaneous activation of 5-HT1A and muscarinic receptors at preventing MK-801-induced cognitive deficits in novel object recognition (NOR) or Y-maze tests was investigated. Activators of 5-HT1A (F15599), M1 (VU0357017), M4 (VU0152100), or M5 (VU0238429) receptors administered at top doses for seven days reversed MK-801-induced deficits in the NOR test, similar to the simultaneous administration of subeffective doses of F15599 (0.05 mg/kg) with VU0357017 (0.15 mg/kg), VU0152100 (0.05 mg/kg), or VU0238429 (1 mg/kg). The compounds did not prevent the MK-801-induced impairment when administered acutely. Their activity was less evident in the Y-maze. Pharmacokinetic studies revealed high brain penetration of F15599 (brain/plasma ratio 620%), which was detected in the frontal cortex (FC) up to 2 h after administration. Decreases in the brain penetration properties of the compounds were observed after acute administration of the combinations, which might have influenced behavioral responses. This negative effect on brain penetration was not observed when the compounds were administered repeatedly. Based on our results, prolonged administration of a 5-HT1A activator with muscarinic receptor ligands may be effective at reversing cognitive decline related to schizophrenia, and the FC may play a critical role in this interaction.
Asunto(s)
Colinérgicos/farmacología , Disfunción Cognitiva/tratamiento farmacológico , Corteza Prefrontal/efectos de los fármacos , Esquizofrenia/tratamiento farmacológico , Agonistas de Receptores de Serotonina/farmacología , Animales , Benzamidas/farmacocinética , Benzamidas/farmacología , Benzamidas/uso terapéutico , Barrera Hematoencefálica/metabolismo , Colinérgicos/farmacocinética , Colinérgicos/uso terapéutico , Disfunción Cognitiva/etiología , Maleato de Dizocilpina/toxicidad , Masculino , Aprendizaje por Laberinto , Ratones , Piperidinas/farmacocinética , Piperidinas/farmacología , Piperidinas/uso terapéutico , Corteza Prefrontal/metabolismo , Piridinas/farmacocinética , Piridinas/farmacología , Piridinas/uso terapéutico , Pirimidinas/farmacocinética , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Receptores Muscarínicos/metabolismo , Receptores de Serotonina/metabolismo , Esquizofrenia/complicaciones , Agonistas de Receptores de Serotonina/farmacocinética , Agonistas de Receptores de Serotonina/uso terapéutico , Tiofenos/farmacocinética , Tiofenos/farmacología , Tiofenos/uso terapéuticoRESUMEN
MK-801, an NMDA receptor antagonist, and scopolamine, a cholinergic receptor blocker, are widely used as tool compounds to induce learning and memory deficits in animal models to study schizophrenia or Alzheimer-type dementia (AD), respectively. Memory impairments are observed after either acute or chronic administration of either compound. The present experiments were performed to study the nitric oxide (NO)-related mechanisms underlying memory dysfunction induced by acute or chronic (14 days) administration of MK-801 (0.3 mg/kg, i.p.) or scopolamine (1 mg/kg, i.p.). The levels of L-arginine and its derivatives, L-citrulline, L-glutamate, L-glutamine and L-ornithine, were measured. The expression of constitutive nitric oxide synthases (cNOS), dimethylaminohydrolase (DDAH1) and protein arginine N-methyltransferases (PMRTs) 1 and 5 was evaluated, and the impact of the studied tool compounds on cGMP production and NMDA receptors was measured. The studies were performed in both the cortex and hippocampus of mice. S-nitrosylation of selected proteins, such as GLT-1, APP and tau, was also investigated. Our results indicate that the availability of L-arginine decreased after chronic administration of MK-801 or scopolamine, as both the amino acid itself as well as its level in proportion to its derivatives (SDMA and NMMA) were decreased. Additionally, among all three methylamines, SDMA was the most abundant in the brain (~70%). Administration of either compound impaired eNOS-derived NO production, increasing the monomer levels, and had no significant impact on nNOS. Both compounds elevated DDAH1 expression, and slight decreases in PMRT1 and PMRT5 in the cortex after scopolamine (acute) and MK-801 (chronic) administration were observed in the PFC, respectively. Administration of MK-801 induced a decrease in the cGMP level in the hippocampus, accompanied by decreased NMDA expression, while increased cGMP production and decreased NMDA receptor expression were observed after scopolamine administration. Chronic MK-801 and scopolamine administration affected S-nitrosylation of GLT-1 transport protein. Our results indicate that the analyzed tool compounds used in pharmacological models of schizophrenia or AD induce changes in NO-related pathways in the brain structures involved in cognition. To some extent, the changes resemble those observed in human samples.
Asunto(s)
Corteza Cerebral/metabolismo , Maleato de Dizocilpina/efectos adversos , Antagonistas de Aminoácidos Excitadores/efectos adversos , Hipocampo/metabolismo , Trastornos de la Memoria , Óxido Nítrico/metabolismo , Escopolamina/efectos adversos , Animales , Maleato de Dizocilpina/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/metabolismo , Ratones , Escopolamina/farmacologíaRESUMEN
Brain metastases are the most prevalent intracranial malignancy. Patient outcome is poor and treatment options are limited. Hence, new avenues must be explored to identify potential therapeutic targets. Inflammation is a known critical component of cancer progression. Intratumoral inflammation drives progression and leads to the release of circulating tumor cells (CTCs). Inflammation at distant sites promotes adhesion of CTCs to the activated endothelium and then initiates the formation of metastases. These interactions mostly involve cell adhesion molecules expressed by activated endothelial cells. For example, the vascular cell adhesion molecule-1 (VCAM-1) is known to promote transendothelial migration of cancer cells in different organs. However, it is unclear whether a similar mechanism occurs within the specialized environment of the brain. Our objective was therefore to use molecular imaging to assess the potential role of VCAM-1 in promoting the entry of CTCs into the brain. First, magnetic resonance imaging (MRI) and histological analyses revealed that cerebrovascular inflammation induced by intracranial injection of lipopolysaccharide significantly increased the expression of VCAM-1 in the Balb/c mouse brain. Next, intracardiac injection of 4T1 mammary carcinoma cancer cells in animals with cerebrovascular inflammation yielded a higher brain metastasis burden than in the control animals. Finally, blocking VCAM-1 prior to 4T1 cells injection prevented this increased metastatic burden. Here, we demonstrated that by contributing to CTCs adhesion to the activated cerebrovascular endothelium, VCAM-1 improves the capacity of CTCs to form metastatic foci in the brain.
Asunto(s)
Neoplasias Encefálicas/secundario , Trastornos Cerebrovasculares/patología , Inflamación/patología , Neoplasias Mamarias Experimentales/patología , Animales , Neoplasias Encefálicas/diagnóstico por imagen , Línea Celular Tumoral , Trastornos Cerebrovasculares/diagnóstico por imagen , Femenino , Inflamación/diagnóstico por imagen , Imagen por Resonancia Magnética , Neoplasias Mamarias Experimentales/diagnóstico por imagen , Ratones , Ratones Endogámicos BALB C , Receptores de Vasopresinas/metabolismoRESUMEN
Psoriasis is a systemic disease that is strictly connected with metabolic disorders (insulin resistance, atherogenic dyslipidemia, arterial hypertension, and cardiovascular diseases). It occurs more often in patients with a more severe course of the disease. Obesity is specially an independent risk factor and it is associated with a worse treatment outcome because of the high inflammatory activity of visceral fatty tissue and the production of inflammatory mediators involved in the development of both psoriasis and metabolic disorders. However, in psoriasis the activation of the Th17/IL-17 and the abnormalities in the Th17/Treg balance axis are observed, but this pathomechanism does not fully explain the frequent occurrence of metabolic disorders. Therefore, there is a need to look for better biomarkers in the diagnosis, prognosis and monitoring of concomitant disorders and therapeutic effects in psoriasis. In addition, the education on the use of a proper diet as a prophylaxis for the development of the above disorders is an important element of holistic care for a patient with psoriasis. Diet may affect gene expression due to epigenetic modification which encompasses interactions of environment, nutrition and diseases. Patients with psoriasis should be advised to adopt proper diet and dietician support.
RESUMEN
Psoriasis is a multifactorial disease in which genetic, environmental and epigenetic factors regulating gene expression play a key role. In the "genomic era", genome-wide association studies together with target genotyping platforms performed in different ethnic populations have found more than 50 genetic susceptible markers associated with the risk of psoriasis which have been identified so far. Up till now, the strongest association with the risk of the disease has been proved for HLA-C*06 gene. The majority of other psoriasis risk SNPs are situated near the genes encoding molecules involved in adaptive and innate immunity, and skin barrier function. Many contemporary studies indicate that the epigenetic changes: histone modification, promoter methylations, long non-coding and micro-RNA hyperexpression are considered as factors contributing to psoriasis pathogenesis as they regulate abnormal keratinocyte differentiation and proliferation, aberrant keratinocytes - inflammatory cells communication, neoangiogenesis and chronic inflammation. The circulating miRNAs detected in the blood may become specific markers in the diagnosis, prognosis and response to the treatment of the disease. The inhibition of expression in selected miRNAs may be a new promising therapy option for patients with psoriasis.
RESUMEN
Psoriatic arthritis (PsA) is a chronic, progressive, inflammatory arthropathy associated with psoriasis as well as a complex pathogenesis. Genetic and environmental factors trigger the development of the immune-mediated auto-inflammatory response in different sites: skin, bone marrow, entheses and synovial tissues. Studies of the last two decades have changed the view of PsA from a mild, non-progressive arthritis to an inflammatory systemic disease with serious health consequences, not only associated with joint dysfunction, but also with an increased risk of cardiovascular disease and socioeconomic consequences with significantly reduced quality of life. The joint damage starts early in the course of the disease, thus early recognition and treatment with modern biological treatments, which may modify the natural history and slow down progression of this debilitating disease, is essential for the patient long-term outcome.
RESUMEN
Psoriasis is a common, chronic, inflammatory, immune-mediated skin disease affecting about 2% of the world's population. According to current knowledge, psoriasis is a complex disease that involves various genes and environmental factors, such as stress, injuries, infections and certain medications. The chronic inflammation of psoriasis lesions develops upon epidermal infiltration, activation, and expansion of type 1 and type 17 Th cells. Despite the enormous progress in understanding the mechanisms that cause psoriasis, the target cells and antigens that drive pathogenic T cell responses in psoriatic lesions are still unproven and the autoimmune basis of psoriasis still remains hypothetical. However, since the identification of the Th17 cell subset, the IL-23/Th17 immune axis has been considered a key driver of psoriatic inflammation, which has led to the development of biologic agents that target crucial elements of this pathway. Here we present the current understanding of various aspects in psoriasis pathogenesis.
RESUMEN
Negative and cognitive symptoms of schizophrenia contribute to an impaired social and professional life for schizophrenic patients, and in most cases, these symptoms are treatment resistant. Therefore, identification of new treatment strategies is sorely needed. Metabotropic glutamate receptors (mGlu) and muscarinic (M) receptors for acetylcholine have been considered promising targets for novel antipsychotics. Among them, mGlu2 and M4 subtypes seem to be of particular importance. In the present study, the effect of mutual activation of mGlu2 and M4 receptors was assessed in MK-801-based animal models of negative and cognitive symptoms of schizophrenia, that is, social interaction and novel object recognition tests. Low sub-effective doses of LY487379 (0.5 mg/kg), a positive allosteric activator of the mGlu2 receptor, and VU152100 (0.25-0.5 mg/kg), a positive allosteric modulator of the M4 receptor, were simultaneously administered in the aforementioned tests. Combined administration of these compounds prevented MK-801-induced disturbances in social interactions and object recognition when acutely administered 30 min before MK-801. Prolonged (7 days) administration of these compounds resulted in the loss of effectiveness in preventing MK-801-induced disruptions in the novel object recognition test but not in the social interaction test. In the next set of experiments, MK-801 (0.3 mg/kg) was administered for seven consecutive days, and the activity of the compounds was investigated on day eight, during which time MK-801 was not administered. In this model, based on prolonged MK-801 administration, the effectiveness of the compounds to treat MK-801-induced disruptions was evident at low doses which were ineffective in preventing the behavioural disturbances induced by an acute MK-801 injection. Combined administration of the compounds did not exert better efficacy than each compound given alone. Pharmacokinetic analysis confirmed a lack of possible drug-drug interactions after combined administration of LY487379 and VU152100. Our data show that modulation of M4 and mGlu2 receptors may potentially be beneficial in the treatment of negative and cognitive symptoms of schizophrenia.
Asunto(s)
Antipsicóticos/uso terapéutico , Benzamidas/uso terapéutico , Memoria a Corto Plazo/efectos de los fármacos , Pirazoles/uso terapéutico , Piridinas/uso terapéutico , Esquizofrenia/tratamiento farmacológico , Conducta Social , Sulfonamidas/uso terapéutico , Animales , Antipsicóticos/administración & dosificación , Antipsicóticos/farmacología , Benzamidas/administración & dosificación , Benzamidas/farmacología , Maleato de Dizocilpina/toxicidad , Quimioterapia Combinada , Agonistas de Aminoácidos Excitadores/administración & dosificación , Agonistas de Aminoácidos Excitadores/farmacología , Agonistas de Aminoácidos Excitadores/uso terapéutico , Antagonistas de Aminoácidos Excitadores/toxicidad , Masculino , Ratones , Pirazoles/administración & dosificación , Pirazoles/farmacología , Piridinas/administración & dosificación , Piridinas/farmacología , Receptor Muscarínico M4/efectos de los fármacos , Receptores de Glutamato , Esquizofrenia/etiología , Sulfonamidas/administración & dosificación , Sulfonamidas/farmacologíaRESUMEN
The activity of an allosteric agonist of muscarinic M1 receptor, VU0357017, and a positive allosteric modulator (PAM) of M5 receptor, VU0238429, were investigated alone or in combination with the mGlu2 receptor PAM, LY487379 using the following behavioural tests: prepulse inhibition (PPI), novel object recognition (NOR), and spatial delayed alternation (SDA). VU0357017 (10 and 20 mg/kg) and VU0238429 (5 and 10 mg/kg) reversed deficits in PPI while VU0238429 (2.5 and 5 mg/kg) was effective in SDA. The simultaneous administration of subeffective doses of M1 or M5 activators (5, 1, or 0.25 mg/kg) with LY487379 (0.5 mg/kg) induced the same effect as that observed for the active dose of each compound. Selective M1 or M5 receptor blockers antagonized the effect exerted by these combinations, and pharmacokinetic studies confirmed independent transport through the blood-brain barrier. The expression of both receptors (M1 and M5) was established in brain structures involved in cognition (neocortex, hippocampus, and entorhinal cortex) in both the rat and the mouse brains by immunofluorescence staining. Specifically, double neuronal staining of mGlu2-M1 and mGlu2-M5 receptors was observed in many areas of the rat brain, while the number of double-stained mGlu2-M1 receptors was moderate in the mouse brain with no mGlu2-M5 colocalization. Finally, the combined administration of subeffective doses of the compounds did not alter prolactin levels or motor coordination, in contrast to the compounds given alone at the highest dose or in combination with standard neuroleptics.
Asunto(s)
Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Maleato de Dizocilpina/toxicidad , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M5/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Antagonistas de Aminoácidos Excitadores/toxicidad , Masculino , Ratones , Piridinas/farmacología , Ratas , Ratas Wistar , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M5/agonistas , Receptores de Glutamato Metabotrópico/agonistas , Sulfonamidas/farmacologíaRESUMEN
Gender differences in the burden of cardiovascular disease (CVD) have been observed worldwide. In this study, plasmatic levels of trimethylamine (TMA) and blood oxidative biomarkers have been evaluated in 358 men (89 controls and 269 CVD patients) and 189 women (64 control and 125 CVD patients). The fluorescence technique was applied to determine erythrocyte membrane fluidity using 1,6-diphenyl-1,3,5-hexatriene (DPH) and Laurdan, while lipid hydroperoxides were assessed by diphenyl-1-pyrenylphosphine (DPPP). Results show that levels of plasmatic TMA were higher in healthy men with respect to healthy women (p = 0.0001). Significantly lower TMA was observed in male CVD patients (0.609 ± 0.104 µM) compared to healthy male controls (0.680 ± 0.118 µM) (p < 0.001), while higher levels of TMA were measured in female CVD patients (0.595 ± 0.115 µM) with respect to female controls (0.529 ± 0.073 µM) (p < 0.001). DPPP was significantly higher in healthy control men than in women (p < 0.001). Male CVD patients displayed a lower value of DPPP (2777 ± 1924) compared to healthy controls (5528 ± 2222) (p < 0.001), while no significant changes were measured in females with or without CVD (p > 0.05). Membrane fluidity was significantly higher (p < 0.001) in the hydrophobic bilayer only in control male subjects. In conclusion, gender differences were observed in blood oxidative biomarkers, and DPPP value might be suggested as a biomarker predictive of CVD only in men.
RESUMEN
The early atherosclerotic lesions develop by the accumulation of arterial foam cells derived mainly from cholesterol-loaded macrophages. Therefore, cholesterol and cholesteryl ester transfer protein (CETP) have been considered as causative in atherosclerosis. Moreover, recent studies indicate the role of trimethylamine N-oxide (TMAO) in development of cardiovascular disease (CVD). The current study aimed to investigate the association between TMAO and CETP polymorphisms (rs12720922 and rs247616), previously identified as a genetic determinant of circulating CETP, in a population of coronary artery disease (CAD) patients (n = 394) and control subjects (n = 153). We also considered age, sex, trimethylamine (TMA) levels and glomerular filtration rate (GFR) as other factors that can potentially play a role in this complex picture. We found no association of TMAO with genetically determined CETP in a population of CAD patients and control subjects. Moreover, we noticed no differences between CAD patients and control subjects in plasma TMAO levels. On the contrary, lower levels of TMA in CAD patients respect to controls were observed. Our results indicated a significant correlation between GFR and TMAO, but not TMA. The debate whether TMAO can be a harmful, diagnostic or protective marker in CVD needs to be continued.
Asunto(s)
Colesterol/metabolismo , Metilaminas/metabolismo , Anciano , Transporte Biológico , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/metabolismo , Estudios de Casos y Controles , Proteínas de Transferencia de Ésteres de Colesterol/sangre , Proteínas de Transferencia de Ésteres de Colesterol/genética , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Estudios Transversales , Femenino , Tasa de Filtración Glomerular , Haplotipos , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido SimpleRESUMEN
Recent preclinical studies point to muscarinic and GABAB receptors as novel therapeutic targets for the treatment of schizophrenia. This study was aimed to assess the role of muscarinic and GABAB receptor interactions in animal models of schizophrenia, using positive allosteric modulators (PAMs) of GABAB receptor (GS39783), muscarinic M4 (VU0152100) and M5 (VU0238429) receptor, and partial allosteric agonist of M1 receptor (VU0357017). DOI-induced head twitches, social interaction and novel object recognition tests were used as the models of schizophrenia. Analyses of DOI-induced increases in sEPSCs (spontaneous excitatory postsynaptic currents) were performed as complementary experiments to the DOI-induced head twitch studies. Haloperidol-induced catalepsy and the rotarod test were used to examine the adverse effects of the drugs. All three activators of muscarinic receptors were active in DOI-induced head twitches. When administered together with GS39783 in subeffective doses, only the co-administration of VU0152100 and GS39783 was effective. The combination also reduced the frequency but not the amplitude of DOI-induced sEPSCs. Neither VU0357017 nor VU0238429 were active in social interaction test when given alone, and also the combination of VU0152100 and GS39783 failed to reverse MK-801-induced deficits observed in this test. All muscarinic activators when administered alone or in combination with GS39783 reversed the MK-801-induced disruption of memory in the novel object recognition test, and their actions were blocked by specific antagonists. None of the tested compounds or their combinations influenced the motor coordination of the animals. The compounds had no effect on haloperidol-induced catalepsy and did not induce catalepsy when administered alone. Pharmacokinetic analysis confirmed lack of possible drug-drug interactions after combined administration of GS39783 with VU0357017 or VU0152100; however, when the drug was co-administered with VU0238429 its ability to pass the blood-brain barrier slightly decreased, suggesting potential drug-drug interactions. Our data show that modulation of cholinergic and GABAergic systems can potentially be beneficial in the treatment of the positive and cognitive symptoms of schizophrenia without inducing the adverse effects typical for presently used antipsychotics.
Asunto(s)
Antipsicóticos/farmacología , Neurotransmisores/farmacología , Receptores de GABA-B/metabolismo , Receptores Muscarínicos/metabolismo , Esquizofrenia/tratamiento farmacológico , Regulación Alostérica , Animales , Antipsicóticos/farmacocinética , Benzamidas/farmacocinética , Benzamidas/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Ciclopentanos/farmacocinética , Ciclopentanos/farmacología , Modelos Animales de Enfermedad , Quimioterapia Combinada , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Indoles/farmacocinética , Indoles/farmacología , Masculino , Ratones , Neurotransmisores/farmacocinética , Piridinas/farmacocinética , Piridinas/farmacología , Pirimidinas/farmacocinética , Pirimidinas/farmacología , Esquizofrenia/metabolismo , Tiofenos/farmacocinética , Tiofenos/farmacologíaRESUMEN
Quantification of angiotensin (Ang) peptides in biological matrices is a challenge due to their low picomolar (pM) concentration and poor analytical performance of current methods. This work aimed to select an optimal strategy for liquid chromatography/mass spectrometry (LC/MS) quantification of major angiotensins in plasma of wild type and atherosclerotic mice. Optimal LC/MS set-up for Ang quantification was chosen, based on analytical performance, from: nanoflow/orbitrap, nanoflow/triple quadrupole and preconcentration nanoflow/triple quadrupole. The best LC/MS configuration (preconcentration nanoflow/triple quadrupole) was validated and used for measurement of angiotensins (Ang I, II, III, IV and (1-7)) in plasma of 6-month-old atherosclerotic apolipoprotein E/LDL receptor double knock-outs (ApoE/LDLR (--/--)) and wild type C57BL/6J (WT) mice. The method established for Ang quantification was selective, accurate and highly sensitive with LLOQ of 5pgmL(-1). The peak area intra-day precisions for Ang II and Ang-(1-7) were in the range 3.0-5.1 and 3.5-5.8, respectively, with corresponding accuracy of 95.4-103.5% and 95.6-106.3%. Plasma angiotensin profile was substantially modified in ApoE/LDLR knock-out mice with increase in concentration of Ang II from 37.6±21.3pgmL(-1) in WT to 200.2±47.6pgmL(-1). Concentrations of Ang I, III and IV were also increased 3-10 fold in ApoE/LDLR (--/--) mice while that of Ang-(1-7) was unchanged. We conclude that the method developed could be effectively used for accurate, comprehensive profiling of angiotensin peptides in mouse plasma. We identified substantial changes in renin-angiotensin system in a genetic mouse model of atherosclerosis consistent with the overactivation of angiotensin converting enzyme (ACE) and the impairment of ACE2.
Asunto(s)
Angiotensinas/sangre , Aterosclerosis/sangre , Angiotensina I/sangre , Angiotensina II/sangre , Angiotensina III/sangre , Animales , Apolipoproteínas E/genética , Aterosclerosis/genética , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Ratones Endogámicos C57BL , Ratones Noqueados , Fragmentos de Péptidos/sangre , Receptores de LDL/genéticaRESUMEN
In order to target and image MMP-2 activity using optical imaging, we developed a panel of new MMP-2 probes based on Cy5 and QSY21 as fluorophore/quencher FRET partners, separated by various MMP-2 specific peptide substrates. We compared these probes for their specificity against other MMPs, their rate of activation by MMP-2 and their initial quenching.
Asunto(s)
Carbocianinas , Colorantes Fluorescentes , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Imagen Molecular/métodos , Sondas Moleculares , Fragmentos de Péptidos/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Espectrometría de Masas , Metaloproteinasas de la Matriz/análisis , Metaloproteinasas de la Matriz/químicaRESUMEN
Three dimensional domain swapping is one of the mechanisms involved in formation of insoluble aggregates of some amyloidogenic proteins. It has been proposed that proteins able to swap domains may share some common structural elements like conformationally constrained flexible turns/loops. We studied the role of loop L1 in the dimerization of human cystatin C using mutational analysis. Introduction of turn-favoring residues such as Asp or Asn into the loop sequence (in position 57) leads to a significant reduction of the dimer fraction in comparison with the wild type protein. On the other hand, introduction of a proline residue in position 57 leads to efficient dimer formation. Our results confirm the important role of the loop L1 in the dimerization process of human cystatin C and show that this process can be to some extent governed by single amino acid substitution.