Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
EMBO J ; 41(13): e110352, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35620914

RESUMEN

Beyond its role in cellular homeostasis, autophagy plays anti- and promicrobial roles in host-microbe interactions, both in animals and plants. One prominent role of antimicrobial autophagy is to degrade intracellular pathogens or microbial molecules, in a process termed xenophagy. Consequently, microbes evolved mechanisms to hijack or modulate autophagy to escape elimination. Although well-described in animals, the extent to which xenophagy contributes to plant-bacteria interactions remains unknown. Here, we provide evidence that Xanthomonas campestris pv. vesicatoria (Xcv) suppresses host autophagy by utilizing type-III effector XopL. XopL interacts with and degrades the autophagy component SH3P2 via its E3 ligase activity to promote infection. Intriguingly, XopL is targeted for degradation by defense-related selective autophagy mediated by NBR1/Joka2, revealing a complex antagonistic interplay between XopL and the host autophagy machinery. Our results implicate plant antimicrobial autophagy in the depletion of a bacterial virulence factor and unravel an unprecedented pathogen strategy to counteract defense-related autophagy in plant-bacteria interactions.


Asunto(s)
Enfermedades de las Plantas , Factores de Virulencia , Animales , Autofagia , Bacterias/metabolismo , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/microbiología , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
2.
Plant Cell ; 34(5): 1684-1708, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35134217

RESUMEN

As a critical part of plant immunity, cells that are attacked by pathogens undergo rapid transcriptional reprogramming to minimize virulence. Many bacterial phytopathogens use type III effector (T3E) proteins to interfere with plant defense responses, including this transcriptional reprogramming. Here, we show that Xanthomonas outer protein S (XopS), a T3E of Xanthomonas campestris pv. vesicatoria (Xcv), interacts with and inhibits proteasomal degradation of WRKY40, a transcriptional regulator of defense gene expression. Virus-induced gene silencing of WRKY40 in pepper (Capsicum annuum) enhanced plant tolerance to Xcv infection, indicating that WRKY40 represses immunity. Stabilization of WRKY40 by XopS reduces the expression of its targets, which include salicylic acid-responsive genes and the jasmonic acid signaling repressor JAZ8. Xcv bacteria lacking XopS display significantly reduced virulence when surface inoculated onto susceptible pepper leaves. XopS delivery by Xcv, as well as ectopic expression of XopS in Arabidopsis thaliana or Nicotiana benthamiana, prevented stomatal closure in response to bacteria and biotic elicitors. Silencing WRKY40 in pepper or N. benthamiana abolished XopS's ability to prevent stomatal closure. This suggests that XopS interferes with both preinvasion and apoplastic defense by manipulating WRKY40 stability and downstream gene expression, eventually altering phytohormone crosstalk to promote pathogen proliferation.


Asunto(s)
Arabidopsis , Capsicum , Xanthomonas campestris , Xanthomonas , Arabidopsis/metabolismo , Capsicum/genética , Capsicum/metabolismo , Capsicum/microbiología , Muerte Celular/genética , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/microbiología , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteína S/genética , Proteína S/metabolismo , Xanthomonas campestris/metabolismo
6.
Trends Plant Sci ; 28(6): 698-714, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36801193

RESUMEN

Protein homeostasis is epitomized by an equilibrium between protein biosynthesis and degradation: the 'life and death' of proteins. Approximately one-third of newly synthesized proteins are degraded. As such, protein turnover is required to maintain cellular integrity and survival. Autophagy and the ubiquitin-proteasome system (UPS) are the two principal degradation pathways in eukaryotes. Both pathways orchestrate many cellular processes during development and upon environmental stimuli. Ubiquitination of degradation targets is used as a 'death' signal by both processes. Recent findings revealed a direct functional link between both pathways. Here, we summarize key findings in the field of protein homeostasis, with an emphasis on the newly revealed crosstalk between both degradation machineries and how it is decided which pathway facilitates target degradation.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Ubiquitina , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ubiquitina/metabolismo , Ubiquitinación , Autofagia
7.
Mol Plant Pathol ; 18(3): 435-442, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27037957

RESUMEN

The plant pathogen Candidatus Phytoplasma mali (P. mali) is the causative agent of apple proliferation, a disease of increasing importance in apple-growing areas within Europe. Despite its economic importance, little is known about the molecular mechanisms of disease manifestation within apple trees. In this study, we identified two TCP (TEOSINTE BRANCHED/CYCLOIDEA/PROLIFERATING CELL FACTOR) transcription factors of Malus x domestica as binding partners of the P. mali SAP11-like effector ATP_00189. Phytohormone analyses revealed an effect of P. mali infection on jasmonates, salicylic acid and abscisic acid levels, showing that P. mali affects phytohormonal levels in apple trees, which is in line with the functions of the effector assumed from its binding to TCP transcription factors. To our knowledge, this is the first characterization of the molecular targets of a P. mali effector and thus provides the basis to better understand symptom development and disease progress during apple proliferation. As SAP11 homologues are found in several Phytoplasma species infecting a broad range of different plants, SAP11-like proteins seem to be key players in phytoplasmal infection.


Asunto(s)
Malus/metabolismo , Malus/microbiología , Phytoplasma/patogenicidad , Enfermedades de las Plantas/microbiología , Factores de Transcripción/metabolismo , Ácido Abscísico/metabolismo , Ciclopentanos/metabolismo , Ácidos Grasos Insaturados , Isoleucina/análogos & derivados , Isoleucina/metabolismo , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA