Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
2.
Diagnostics (Basel) ; 14(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39061691

RESUMEN

The radiomic analysis of the tissue surrounding colorectal liver metastases (CRLM) enhances the prediction accuracy of pathology data and survival. We explored the variation of the textural features in the peritumoural tissue as the distance from CRLM increases. We considered patients with hypodense CRLMs >10 mm and high-quality computed tomography (CT). In the portal phase, we segmented (1) the tumour, (2) a series of concentric rims at a progressively increasing distance from CRLM (from one to ten millimetres), and (3) a cylinder of normal parenchyma (Liver-VOI). Sixty-three CRLMs in 51 patients were analysed. Median peritumoural HU values were similar to Liver-VOI, except for the first millimetre around the CRLM. Entropy progressively decreased (from 3.11 of CRLM to 2.54 of Liver-VOI), while uniformity increased (from 0.135 to 0.199, p < 0.001). At 10 mm from CRLM, entropy was similar to the Liver-VOI in 62% of cases and uniformity in 46%. In small CRLMs (≤30 mm) and responders to chemotherapy, normalisation of entropy and uniformity values occurred in a higher proportion of cases and at a shorter distance. The radiomic analysis of the parenchyma surrounding CRLMs unveiled a wide halo of progressively decreasing entropy and increasing uniformity despite a normal radiological aspect. Underlying pathology data should be investigated.

3.
Dig Liver Dis ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39003163

RESUMEN

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) is an aggressive disease with increasing incidence and its genetic alterations could be the target of systemic therapies. AIMS: To elucidate if radiomics extracted from computed tomography (CT) may non-invasively predict ICC genetic alterations. METHODS: All consecutive patients with a diagnosis of a mass-forming ICC (01/2016-06/2022) were considered. Inclusion criteria were availability of a high-quality contrast-enhanced CT and molecular profiling by NGS or FISH for FGFR2 fusion/rearrangement. The CT scan at diagnosis was considered. Genetic analyses were performed on surgical specimens (resectable patients) or biopsies (unresectable ones). The radiomic features were extracted using the LifeX software. Multivariate predictive models of the commonest genetic alterations were built. RESULTS: In the 90 enrolled patients (58 NGS/32 FISH, median age 65 years), the most common genetic alterations were FGFR2 (20/90), IDH1 (10/58), and KRAS (9/58). At internal validation, the combined clinical-radiomic models achieved the best performance for the prediction of FGFR2 (AUC = 0.892) and IDH1 status (AUC = 0.819), outperforming the pure clinical and radiomic models. The radiomic model for predicting KRAS mutations achieved an AUC = 0.767 (vs. 0.660 of the clinical model) without further improvements with the addition of clinical features. CONCLUSIONS: CT-based radiomics provides a reliable non-invasive prediction of ICC genetic status with a major impact on therapeutic strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA