Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38928376

RESUMEN

SARS-CoV-2 is the causative agent of the COVID-19 pandemic, the acute respiratory disease which, so far, has led to over 7 million deaths. There are several symptoms associated with SARS-CoV-2 infections which include neurological and psychiatric disorders, at least in the case of pre-Omicron variants. SARS-CoV-2 infection can also promote the onset of glioblastoma in patients without prior malignancies. In this study, we focused on the Envelope protein codified by the virus genome, which acts as viroporin and that is reported to be central for virus propagation. In particular, we characterized the electrophysiological profile of E-protein transfected U251 and HEK293 cells through the patch-clamp technique and FURA-2 measurements. Specifically, we observed an increase in the voltage-dependent (Kv) and calcium-dependent (KCa) potassium currents in HEK293 and U251 cell lines, respectively. Interestingly, in both cellular models, we observed a depolarization of the mitochondrial membrane potential in accordance with an alteration of U251 cell growth. We, therefore, investigated the transcriptional effect of E protein on the signaling pathways and found several gene alterations associated with apoptosis, cytokines and WNT pathways. The electrophysiological and transcriptional changes observed after E protein expression could explain the impact of SARS-CoV-2 infection on gliomagenesis.


Asunto(s)
COVID-19 , Glioblastoma , Potencial de la Membrana Mitocondrial , SARS-CoV-2 , Humanos , Glioblastoma/metabolismo , Glioblastoma/virología , Glioblastoma/patología , Glioblastoma/genética , Células HEK293 , SARS-CoV-2/fisiología , COVID-19/virología , COVID-19/metabolismo , Línea Celular Tumoral , Proteínas de la Envoltura de Coronavirus/metabolismo , Proteínas de la Envoltura de Coronavirus/genética , Apoptosis , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/virología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética
2.
Int J Mol Sci ; 25(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38791387

RESUMEN

Oocyte-cumulus cell interaction is essential for oocyte maturation and competence. The bidirectional crosstalk network mediated by gap junctions is fundamental for the metabolic cooperation between these cells. As cumulus cells exhibit a more glycolytic phenotype, they can provide metabolic substrates that the oocyte can use to produce ATP via oxidative phosphorylation. The impairment of mitochondrial activity plays a crucial role in ovarian aging and, thus, in fertility, determining the success or failure of assisted reproductive techniques. This review aims to deepen the knowledge about the electro-metabolic coupling of the cumulus-oocyte complex and to hypothesize a putative role of potassium channel modulators in order to improve fertility, promote intracellular Ca2+ influx, and increase the mitochondrial biogenesis and resulting ATP levels in cumulus cells.


Asunto(s)
Células del Cúmulo , Oocitos , Oocitos/metabolismo , Células del Cúmulo/metabolismo , Células del Cúmulo/citología , Humanos , Animales , Femenino , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo , Uniones Comunicantes/metabolismo , Fosforilación Oxidativa , Calcio/metabolismo , Canales de Potasio/metabolismo , Comunicación Celular
3.
Eur J Nutr ; 57(7): 2547-2569, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28864908

RESUMEN

PURPOSE: Human melanoma is a highly aggressive incurable cancer due to intrinsic cellular resistance to apoptosis, reprogramming, proliferation and survival during tumour progression. Sulforaphane (SFN), an isothiocyanate found in cruciferous vegetables, plays a role in carcinogenesis in many cancer types. However, the cytotoxic molecular mechanisms and gene expression profiles promoted by SFN in human melanoma remain unknown. METHODS: Three different cell lines were used: two human melanoma A375 and 501MEL and human epidermal melanocytes (HEMa). Cell viability and proliferation, cell cycle analysis, cell migration and invasion and protein expression and phosphorylation status of Akt and p53 upon SFN treatment were determined. RNA-seq of A375 was performed at different time points after SFN treatment. RESULTS: We demonstrated that SFN strongly decreased cell viability and proliferation, induced G2/M cell cycle arrest, promoted apoptosis through the activation of caspases 3, 8, 9 and hampered migration and invasion abilities in the melanoma cell lines. Remarkably, HEMa cells were not affected by SFN treatment. Transcriptomic analysis revealed regulation of genes involved in response to stress, apoptosis/cell death and metabolic processes. SFN upregulated the expression of pro-apoptotic genes, such as p53, BAX, PUMA, FAS and MDM2; promoted cell cycle inhibition and growth arrest by upregulating EGR1, GADD45B, ATF3 and CDKN1A; and simultaneously acted as a potent inhibitor of genotoxicity by launching the stress-inducible protein network (HMOX1, HSPA1A, HSPA6, SOD1). CONCLUSION: Overall, the data show that SFN cytotoxicity in melanoma derives from complex and concurrent mechanisms during carcinogenesis, which makes it a promising cancer prevention agent.


Asunto(s)
Anticarcinógenos/farmacología , Apoptosis/efectos de los fármacos , Brassicaceae/química , Supervivencia Celular , Isotiocianatos/farmacología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Melanoma/terapia , Sulfóxidos , Tiocianatos
4.
Pharmaceutics ; 16(3)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38543308

RESUMEN

Human glioblastoma is probably the most malignant and aggressive among cerebral tumors, of which it represents approximately 80% of the reported cases, with an overall survival rate that is quite low. Current therapies include surgery, chemotherapy, and radiotherapy, with associated consistent side effects and low efficacy. The hardness in reaching the site of action, and overcoming the blood-brain barrier, is a major limitation of pharmacological treatments. In this paper, we report the synthesis and characterization of ZIF-90 (ZIF, Zeolitic Imidazolate Framework) nanoparticles as putative carriers of anticancer drugs to the brain. In particular, we successfully evaluated the biocompatibility of these nanoparticles, their stability in body fluids, and their ability to uptake in U251 human glioblastoma cell lines. Furthermore, we managed to synthesize ZIF-90 particles loaded with berberine, an alkaloid reported as a possible effective adjuvant in the treatment of glioblastoma. These findings could suggest ZIF-90 as a possible new strategy for brain cancer therapy and to study the physiological processes present in the central nervous system.

5.
Cancers (Basel) ; 15(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37509279

RESUMEN

BACKGROUND: Chronic lymphocytic leukemia (CLL) is an incurable disorder associated with alterations in several pathways essential for survival and proliferation. Despite the advances made in CLL therapy with the new target agents, in some cases, relapses and resistance could occur, making the discovery of new alternatives to manage CLL refractoriness necessary. To provide new therapeutic strategies for CLL, we investigated the anti-leukemic activity of silver nanoparticles (AgNPs), whose impact on CLL cells has been poorly explored. METHODS: We studied the action mechanisms of AgNPs in vitro through flow cytometry and molecular analyses. To improve the bioavailability of AgNPs, we generated AgNPs coated with the anti-CD20 antibody Rituximab (AgNPs@Rituximab) and carried out imaging-based approaches and in vivo experiments to evaluate specificity, drug uptake, and efficacy. RESULTS: AgNPs reduced the viability of primary CLL cells and the HG-3 cell line by inducing an intrinsic apoptotic pathway characterized by Bax/Bcl-2 imbalance, caspase activation, and PARP degradation. Early apoptotic events triggered by AgNPs included enhanced Ca2+ influx and ROS overproduction. AgNPs synergistically potentiated the cytotoxicity of Venetoclax, Ibrutinib, and Bepridil. In vitro, the AgNPs@Rituximab conjugates were rapidly internalized within CLL cells and strongly prolonged the survival of CLL xenograft models compared to each unconjugated single agent. CONCLUSIONS: AgNPs showed strong anti-leukemic activity in CLL, with the potential for clinical translation in combination with agents used in CLL. The increased specificity of AgNPs@Rituximab toward CLL cells could be relevant for overcoming in vivo AgNPs' non-specific distribution and increasing their efficacy.

6.
Fertil Steril ; 115(4): 1063-1073, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33487442

RESUMEN

OBJECTIVE: To study the biological effects of resveratrol on the growth, electrophysiology, and mitochondrial function of human granulosa cells (h-GCs). DESIGN: Preclinical study. SETTING: Electrophysiology laboratory and in vitro fertilization unit. PATIENT(S): This study included h-GCs from seven infertile women undergoing assisted reproductive techniques. INTERVENTION(S): Human ovarian Granulosa Cell Tumor (GCT) cell line COV434 and h-GCs obtained after oocyte retrieval were cultured in the absence or presence of resveratrol. MAIN OUTCOME MEASURE(S): Granulosa cells were evaluated for cell viability and mitochondrial activity. Electrophysiological recordings and evaluation of potassium current (IKur) and Ca2+ concentration were also performed. RESULT(S): Resveratrol induced mitochondrial activity in a bell-shaped, dose-effect-dependent manner. Specifically, resveratrol treatment (3 µM, 48 hours) increased ATP production and cell viability and promoted the induction of cellular differentiation. These biological changes were associated with mitochondrial biogenesis. Electrophysiological recordings showed that resveratrol reduced the functional expression of an ultra rapid activating, slow inactivating, delayed rectifier potassium current (IKur) that is associated with a plasma membrane depolarization and that promotes an increase in intracellular Ca2+. CONCLUSION(S): The effects of resveratrol on potassium current and mitochondrial biogenesis in h-GCs could explain the beneficial effects of this polyphenol on the physiology of the female reproductive system. These findings suggest there are therapeutic implications of resveratrol in a clinical setting.


Asunto(s)
Antioxidantes/farmacología , Células de la Granulosa/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Biogénesis de Organelos , Resveratrol/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Femenino , Células de la Granulosa/fisiología , Humanos , Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias/fisiología
7.
Front Physiol ; 12: 790922, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069252

RESUMEN

Glioblastomas (GBs) are among the most common tumors with high malignancy and invasiveness of the central nervous system. Several alterations in protein kinase and ion channel activity are involved to maintain the malignancy. Among them, phosphatidylinositol 3-kinase (PI3K) activity and intermediate conductance calcium-activated potassium (KCa3.1) current are involved in several aspects of GB biology. By using the electrophysiological approach and noise analysis, we observed that KCa3.1 channel activity is LY294002-sensitive and Wortmannin-resistant in accordance with the involvement of PI3K class IIß (PI3KC2ß). This modulation was observed also during the endogenous activation of KCa3.1 current with histamine. The principal action of PI3KC2ß regulation was the reduction of open probability in intracellular free calcium saturating concentration. An explanation based on the "three-gate" model of the KCa3.1 channel by PI3KC2ß was proposed. Based on the roles of KCa3.1 and PI3KC2ß in GB biology, a therapeutic implication was suggested to prevent chemo- and radioresistance mechanisms.

8.
Front Nutr ; 7: 570047, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34422874

RESUMEN

Resveratrol attracts great interest because of the plethora of in vitro effects at the micromolar concentration range. Unfortunately, these effects are difficult to establish in vivo, due to the low concentration of resveratrol reached. This discrepancy is due to the molecules low solubility in water that favors the propensity for an intestinal absorption rather than in the gastric compartment. To address these challenges, we developed a Solid Dispersion of Resveratrol Supported by Magnesium Di Hydroxide formulation (Resv@MDH). This formulation displays increased water solubility and better bioavailability relative to pure resveratrol in the rabbit animal model. In our study, we evaluated the pharmacokinetics profile of resveratrol in six healthy human subjects following 180 mg of oral resveratrol administration, derived from Resv@MDH or pure resveratrol. Free resveratrol was evaluated in the whole blood sample by using HPLC - MS/MS. In comparison with pure resveratrol that displays an increase of the maximum plasma concentration, Cmax at about 90 min and 2 µM, Resv@MDH displays an earlier peak of resveratrol concentration with an increase of Cmax at about 30 min and 6 µM. The different kinetics suggest a main gastric route for resveratrol absorption from Resv@MDH, where, because of its improved dissolution rate, there seems to be a higher propensity for an acidic environment, as opposed to that with pure resveratrol. This conclusion is also supported by the numerical simulation analysis, which considers the principal steps during the oral route administration. Moreover, there is a 2-fold increase in the amount of free resveratrol with respect to pure resveratrol confirming a better bioavailability observed in the animal model. The characteristic feature of the pharmacokinetic profile of Resv@MDH implies that the beneficial properties of resveratrol in human health should be capitalized on it.

9.
Cancers (Basel) ; 12(11)2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33126474

RESUMEN

Glioblastoma is one the most aggressive primary brain tumors in adults, and, despite the fact that radiation and chemotherapy after surgical approaches have been the treatments increasing the survival rates, the prognosis of patients remains poor. Today, the attention is focused on highlighting complementary treatments that can be helpful in improving the classic therapeutic approaches. It is known that 1α,25(OH)2 vitamin D3, a molecule involved in bone metabolism, has many serendipidy effects in cells. It targets normal and cancer cells via genomic pathway by vitamin D3 receptor or via non-genomic pathways. To interrogate possible functions of 1α,25(OH)2 vitamin D3 in multiforme glioblastoma, we used three cell lines, wild-type p53 GL15 and mutant p53 U251 and LN18 cells. We demonstrated that 1α,25(OH)2 vitamin D3 acts via vitamin D receptor in GL15 cells and via neutral sphingomyelinase1, with an enrichment of ceramide pool, in U251 and LN18 cells. Changes in sphingomyelin/ceramide content were considered to be possibly responsible for the differentiating and antiproliferative effect of 1α,25(OH)2 vitamin D in U251 and LN18 cells, as shown, respectively, in vitro by immunofluorescence and in vivo by experiments of xenotransplantation in eggs. This is the first time 1α,25(OH)2 vitamin D3 is interrogated for the response of multiforme glioblastoma cells in dependence on the p53 mutation, and the results define neutral sphingomyelinase1 as a signaling effector.

10.
Curr Pharm Des ; 26(18): 2096-2101, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32175839

RESUMEN

The human intermediate conductance calcium-activated potassium channel, KCa3.1, is involved in several pathophysiological conditions playing a critical role in cell secretory machinery and calcium signalling. The recent cryo-EM analysis provides new insights for understanding the modulation by both endogenous and pharmacological agents. A typical feature of this channel is the low open probability in saturating calcium concentrations and its modulation by potassium channel openers (KCOs), such as benzo imidazolone 1-EBIO, without changing calcium-dependent activation. In this paper, we proposed a model of KCOs action in the modulation of channel activity. The KCa3.1 channel has a very rich pharmacological profile with several classes of molecules that selectively interact with different binding sites of the channel. Among them, benzo imidazolones can be openers (positive modulators such as 1-EBIO, DC-EBIO) or blockers (negative modulators such as NS1619). Through computation modelling techniques, we identified the 1,4-benzothiazin-3-one as a promising scaffold to develop new KCa3.1 channel modulators. Further studies are needed to explore the potential use of 1-4 benzothiazine- 3-one in KCa3.1 modulation and its pharmacological application.


Asunto(s)
Señalización del Calcio , Canales de Potasio de Conductancia Intermedia Activados por el Calcio , Sitios de Unión , Calcio/metabolismo , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo
11.
Curr Pharm Des ; 26(18): 2102-2108, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32233996

RESUMEN

Glioblastoma (GB) represents the most common and malignant form of glioma cancer. The Gold Standard in Glioblastoma is neurosurgical tumor removal and radiotherapy treatment in concomitant with temozolomide (TMZ). Unfortunately, because of tumor chemo and radio-resistance during this therapy, the patient's outcome remains very poor, with a median overall survival of about 14.6 months. Resveratrol is a natural polyphenol with a stilbene structure with chemopreventive and anticancer properties. In the present review, we evaluated data from preclinical studies conducted with resveratrol as a possible adjuvant during the standard protocol of GB. Resveratrol can reach the brain parenchyma at sub-micromolar concentrations when administrated through conventional routes. In this way, resveratrol reduces cell invasion and increases the efficacy of radiotherapy (radiosensitizer effects) and temozolomide. The molecular mechanism of the adjuvant action of resveratrol may depend upon the reduction of PI3K/AKT/NF-κB axis and downstream targets O-6-methylguanine-DNA methyltransferase (MGMT) and metalloproteinase-2 (MMP-2). It has been reported that redox signaling plays an important role in the regulation of autophagy. Resveratrol administration by External Carotid Artery (ECA) injection or by Lumbar Puncture (LP) can reach micromolar concentrations in tumor mass where it would inhibit tumor growth by STAT-3 dependent mechanisms. Preclinical evidences indicate a positive effect on the use of resveratrol as an adjuvant in anti-GB therapy. Ameliorated formulations of resveratrol with a favorable plasmatic profile for a better brain distribution and timing sequences during radio and chemotherapy could represent a critical aspect for resveratrol use as an adjuvant for a clinical evaluation.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Antineoplásicos Alquilantes/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Humanos , Metaloproteinasa 2 de la Matriz , Fosfatidilinositol 3-Quinasas , Resveratrol/farmacología
12.
Sci Rep ; 9(1): 12898, 2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31501459

RESUMEN

Glioblastoma (GBM) is the most common and aggressive human brain cancer with low prognosis and therefore the discovery of new anticancer agents is needful. Sulfydryl reagents, such as silver, have been shown to induce membrane vesiculation in several cellular models through a mechanism that has not been yet completely clarified. Using U251 glioblastoma cells, we observed that silver induced irreversible bleb formation of the plasma membrane. This morphological event was anticipated by an increase of intracellular Ca2+ associated to extracellular Ca2+ influx. Accordingly, using patch-clamp whole cell recording during silver ion application, inward current/s (IAg) at -90 mV were detected and cells were permeable to Ca2+ and monovalent ions such as Na+. IAg activation and the intracellular Ca2+ increase promoted by silver ions (Ag+) were prevented by co-application of 20 µM cysteine and 300 µM DIDS (4,4'-Diisothiocyanatostilbene-2,2'-disulfonic acid), suggesting a critical role of thiol groups in the biological effects of silver ions. IAg was partially inhibited by 1 mM Gd3+, an unspecific inhibitor of cationic currents. Cysteine, Gd3+ and extracellular free Ca2+ solution completely abolished blebbing formation promoted by Ag+. Furthermore, extracellular Na+ ion replacement with TEA or an increase of extracellular tonicity by sucrose (100 mM) reduced both size and growth of membrane blebbing. Our data suggest that Ag+ promotes the formation necrotic blebs as consequence of the increase of intracellular Ca2+ and intracellular hydrostatic pressure associated to the activation of cationic currents. Since silver-induced blebs were less evident in benign glial human Müller MIO-M1 cells, silver compounds could represent new adjuvant to anticancer agents to improve GBM therapies.


Asunto(s)
Membrana Celular/efectos de los fármacos , Membrana Celular/patología , Fenómenos Electrofisiológicos/efectos de los fármacos , Glioblastoma/patología , Plata/química , Plata/farmacología , Calcio/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Presión Hidrostática , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Sodio/metabolismo
13.
Food Chem Toxicol ; 113: 154-161, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29407470

RESUMEN

Melanoma is a severe form of cancer, resistant to conventional therapies. According to in vitro studies, sulforaphane, a dietary component, has been considered a promising antineoplastic candidate. The present study analyzes the in vitro biological effects of sulforaphane in A375 melanoma cell line with or without the addition of Nerve Growth Factor. For the first time, our results show that a supplementation of Nerve Growth Factor partially reverses the sulforaphane-induced: i) inhibition of cell migration, ii) pro apoptotic changes in cell cycle and iii) modulation of active caspase-3. Furthermore, we report the sulforaphane-induced modulation in the expression of Nerve Growth Factor receptors TrKA and p75NTR, shifting their ratio from pro survival to pro apoptotic. In conclusion, the present study evidences that in vivo the antineoplastic effects of sulforaphane may be reduced by the contemporaneous presence of other biological elements such as Nerve Growth Factor and it contributes to a better definition of the real in vivo potentiality of sulforaphane as antineoplastic candidate.


Asunto(s)
Anticarcinógenos/farmacología , Isotiocianatos/farmacología , Melanoma/metabolismo , Factor de Crecimiento Nervioso/fisiología , Neoplasias Cutáneas/metabolismo , Apoptosis , Caspasa 3/metabolismo , Ciclo Celular/fisiología , Línea Celular Tumoral , Movimiento Celular/fisiología , Supervivencia Celular/fisiología , Humanos , Melanoma/patología , Proteínas del Tejido Nervioso/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor trkA/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Neoplasias Cutáneas/patología , Sulfóxidos
14.
Sci Rep ; 8(1): 7979, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29789572

RESUMEN

Glioblastoma multiforme (GBM) is the most frequent malignant brain tumor characterized by highly heterogeneous subpopulations. In order to reveal the heterogeneous cell response, single cell analysis is an essential requirement. In this study, optical microscopy and Raman microspectroscopy were used to follow the stress response of U251 single cells adherent on a silicon substrate. Cultured cells on silicon substrate were treated with hydrogen peroxide to promote apoptosis. Under these conditions expected changes occurred after a few hours and were revealed by the reduction of cytochrome c, lipid, nucleic acid and protein Raman signals: this ensured the possibility to analyse U251 cell line as grown on Si substrate, and to monitor the response of single cells to stress conditions. As a consequence, we used microRaman to monitor the effects induced by nutrient depletion: a fast change of Raman spectra showed two different sub-populations of sensible and resistant U251 cells. Furthermore, spectral variations after DMSO addition were associated to volume changes and confirmed by morphological analysis. Thus, our results highlight the sensitivity of Raman microspectroscopy to detect rapid variations of macromolecule concentration due to oxidative stress and/or cell volume changes at the single cell level.


Asunto(s)
Neoplasias Encefálicas/patología , Glioblastoma/patología , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo , Análisis de la Célula Individual/métodos , Espectrometría Raman/métodos , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Dimetilsulfóxido/farmacología , Glioblastoma/metabolismo , Glucosa/metabolismo , Humanos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología
15.
Nutrients ; 10(12)2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30563110

RESUMEN

Resveratrol, because of its low solubility in water and its high membrane permeability, is collocated in the second class of the biopharmaceutical classification system, with limited bioavailability due to its dissolution rate. Solid dispersion of resveratrol supported on Magnesium DiHydroxide (Resv@MDH) was evaluated to improve solubility and increase bioavailability of resveratrol. Fluorimetric microscopy analysis displays three types of microparticles with similar size: Type 1 that emitted preferably fluorescence at 445 nm with bandwidth of 50 nm, type 2 that emitted preferably fluorescence at 605 nm with bandwidth of 70 nm and type 3 that is non-fluorescent. Micronized pure resveratrol displays only microparticles type 1 whereas type 3 are associated to pure magnesium dihydroxide. Dissolution test in simulated gastric environment resveratrol derived from Resv@MDH in comparison to resveratrol alone displayed better solubility. A 3-fold increase of resveratrol bioavailability was observed after oral administration of 50 mg/kg of resveratrol from Resv@MDH in rabbits. We hypothesize that type 2 microparticles represent magnesium dihydroxide microparticles with a resveratrol shell and that they are responsible for the improved resveratrol solubility and bioavailability of Resv@MDH.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacocinética , Hidróxido de Magnesio/química , Resveratrol/farmacocinética , Administración Oral , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/química , Disponibilidad Biológica , Química Farmacéutica , Tamaño de la Partícula , Conejos , Resveratrol/administración & dosificación , Resveratrol/química
16.
Nanomaterials (Basel) ; 8(11)2018 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-30360511

RESUMEN

The synthesis of ultrasmall UiO-66 nanoparticles (NPs) with an average size of 25 nm, determined by X-ray powder diffraction and electron microscopies analysis, is reported. The NPs were stabilized in water by dialyzing the NP from the DMF used for the synthesis. DLS measurements confirmed the presence of particles of 100 nm, which are spherical aggregates of smaller particles of 20⁻30 nm size. The NP have a BET surface area of 700 m²/g with an external surface area of 300 m²/g. UiO-66_N (UiO-66 nanoparticles) were loaded with acridine orange as fluorescent probe. UV-vis spectroscopy analysis revealed no acridine loss after 48 h of agitation in simulated body fluid. The biocompatibility of UiO-66_N was evaluated in human glioblastoma (GBM) cell line U251, the most malignant (IV grade of WHO classification) among brain tumors. In U251 cells, UiO-66_N are inert since they do not alter the cell cycle, the viability, migration properties, and the expression of kinases involved in cancer cell growth. The internalization process was evident after a few hours of incubation. After 24 h, UiO-66_N@Acr (UiO-66_N loaded with acridine orange) were detectable around the nuclei of the cells. These data suggest that small UiO-66 are biocompatible NP and could represent a potential carrier for drug delivery in glioblastoma therapies.

17.
Eur J Med Chem ; 117: 301-20, 2016 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-27150036

RESUMEN

Our recent finding that paclitaxel behaves as a peptidomimetic of the endogenous protein Nur77 inspired the design of two peptides (PEP1 and PEP2) reproducing the effects of paclitaxel on Bcl-2 and tubulin, proving the peptidomimetic nature of paclitaxel. Starting from these peptide-hits, we herein describe the synthesis and the biological investigation of linear and cyclic peptides structurally related to PEP2. While linear peptides (2a,b, 3a,b, 4, 6a-f) were found inactive in cell-based assays, biological analysis revealed a pro-apoptotic effect for most of the cyclic peptides (5a-g). Cellular permeability of 5a (and also of 2a,b) on HL60 cells was assessed through confocal microscopy analysis. Further cellular studies on a panel of leukemic cell lines (HL60, Jurkat, MEC, EBVB) and solid tumor cell lines (breast cancer MCF-7 cells, human melanoma A375 and 501Mel cells, and murine melanoma B16F1 cells) confirmed the pro-apoptotic effect of the cyclic peptides. Cell cycle analysis revealed that treatment with 5a, 5c, 5d or 5f resulted in an increase in the number of cells in the sub-G0/G1 peak. Direct interaction with tubulin (turbidimetric assay) and with microtubules (immunostaining experiments) was assessed in vitro for the most promising compounds.


Asunto(s)
Apoptosis/efectos de los fármacos , Péptidos Cíclicos/farmacología , Animales , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ratones , Microtúbulos/metabolismo , Péptidos Cíclicos/química , Peptidomiméticos/química , Peptidomiméticos/farmacología , Relación Estructura-Actividad , Tubulina (Proteína)/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA