Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cell ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38876107

RESUMEN

Vector-borne diseases are a leading cause of death worldwide and pose a substantial unmet medical need. Pathogens binding to host extracellular proteins (the "exoproteome") represents a crucial interface in the etiology of vector-borne disease. Here, we used bacterial selection to elucidate host-microbe interactions in high throughput (BASEHIT)-a technique enabling interrogation of microbial interactions with 3,324 human exoproteins-to profile the interactomes of 82 human-pathogen samples, including 30 strains of arthropod-borne pathogens and 8 strains of related non-vector-borne pathogens. The resulting atlas revealed 1,303 putative interactions, including hundreds of pairings with potential roles in pathogenesis, including cell invasion, tissue colonization, immune evasion, and host sensing. Subsequent functional investigations uncovered that Lyme disease spirochetes recognize epidermal growth factor as an environmental cue of transcriptional regulation and that conserved interactions between intracellular pathogens and thioredoxins facilitate cell invasion. In summary, this interactome atlas provides molecular-level insights into microbial pathogenesis and reveals potential host-directed targets for next-generation therapeutics.

2.
BMC Biol ; 18(1): 70, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32560686

RESUMEN

BACKGROUND: Fleas (Insecta: Siphonaptera) are small flightless parasites of birds and mammals; their blood-feeding can transmit many serious pathogens (i.e., the etiological agents of bubonic plague, endemic and murine typhus). The lack of flea genome assemblies has hindered research, especially comparisons to other disease vectors. Accordingly, we sequenced the genome of the cat flea, Ctenocephalides felis, an insect with substantial human health and veterinary importance across the globe. RESULTS: By combining Illumina and PacBio sequencing of DNA derived from multiple inbred female fleas with Hi-C scaffolding techniques, we generated a chromosome-level genome assembly for C. felis. Unexpectedly, our assembly revealed extensive gene duplication across the entire genome, exemplified by ~ 38% of protein-coding genes with two or more copies and over 4000 tRNA genes. A broad range of genome size determinations (433-551 Mb) for individual fleas sampled across different populations supports the widespread presence of fluctuating copy number variation (CNV) in C. felis. Similarly, broad genome sizes were also calculated for individuals of Xenopsylla cheopis (Oriental rat flea), indicating that this remarkable "genome-in-flux" phenomenon could be a siphonapteran-wide trait. Finally, from the C. felis sequence reads, we also generated closed genomes for two novel strains of Wolbachia, one parasitic and one symbiotic, found to co-infect individual fleas. CONCLUSION: Rampant CNV in C. felis has dire implications for gene-targeting pest control measures and stands to complicate standard normalization procedures utilized in comparative transcriptomics analysis. Coupled with co-infection by novel Wolbachia endosymbionts-potential tools for blocking pathogen transmission-these oddities highlight a unique and underappreciated disease vector.


Asunto(s)
Ctenocephalides/genética , Variaciones en el Número de Copia de ADN , Duplicación de Gen , Tamaño del Genoma , Animales , Cromosomas , Femenino , Masculino
3.
J Bacteriol ; 200(19)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30012728

RESUMEN

Members of the Rickettsia genus are obligate intracellular, Gram-negative coccobacilli that infect mammalian and arthropod hosts. Several rickettsial species are human pathogens and are transmitted by blood-feeding arthropods. In Gram-negative parasites, the outer membrane (OM) sits at the nexus of the host-pathogen interaction and is rich in lipopolysaccharide (LPS). The lipid A component of LPS anchors the molecule to the bacterial surface and is an endotoxic agonist of Toll-like receptor 4 (TLR4). Despite the apparent importance of lipid A in maintaining OM integrity, as well as its inflammatory potential during infection, this molecule is poorly characterized in Rickettsia pathogens. In this work, we have identified and characterized new members of the recently discovered LpxJ family of lipid A acyltransferases in both Rickettsia typhi and Rickettsia rickettsii, the etiological agents of murine typhus and Rocky Mountain spotted fever, respectively. Our results demonstrate that these enzymes catalyze the addition of a secondary acyl chain (C14/C16) to the 3'-linked primary acyl chain of the lipid A moiety in the final steps of the Raetz pathway of lipid A biosynthesis. Since lipid A architecture is fundamental to bacterial OM integrity, we believe that rickettsial LpxJ may be important in maintaining membrane dynamics to facilitate molecular interactions at the host-pathogen interface that are required for adhesion and invasion of mammalian cells. This work contributes to our understanding of rickettsial outer membrane physiology and sets a foundation for further exploration of the envelope and its role in pathogenesis.IMPORTANCE Lipopolysaccharide (LPS) triggers an inflammatory response through the TLR4-MD2 receptor complex and inflammatory caspases, a process mediated by the lipid A moiety of LPS. Species of Rickettsia directly engage both extracellular and intracellular immunosurveillance, yet little is known about rickettsial lipid A. Here, we demonstrate that the alternative lipid A acyltransferase, LpxJ, from Rickettsia typhi and R. rickettsii catalyzes the addition of C16 fatty acid chains into the lipid A 3'-linked primary acyl chain, accounting for major structural differences relative to the highly inflammatory lipid A of Escherichia coli.


Asunto(s)
Aciltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Ácidos Grasos/metabolismo , Lípido A/biosíntesis , Rickettsia rickettsii/metabolismo , Rickettsia typhi/metabolismo , Aciltransferasas/genética , Proteínas Bacterianas/genética , Genoma Bacteriano , Interacciones Huésped-Patógeno , Rickettsia rickettsii/genética , Rickettsia typhi/genética
4.
Infect Immun ; 86(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29084898

RESUMEN

Rickettsia species are obligate intracellular bacteria with both conserved and lineage-specific strategies for invading and surviving within eukaryotic cells. One variable component of Rickettsia biology involves arthropod vectors: for instance, typhus group rickettsiae are principally vectored by insects (i.e., lice and fleas), whereas spotted fever group rickettsiae are exclusively vectored by ticks. For flea-borne Rickettsia typhi, the etiological agent of murine typhus, research on vertebrate host biology is facilitated using cell lines and animal models. However, due to the lack of any stable flea cell line or a published flea genome sequence, little is known regarding R. typhi biology in flea vectors that, importantly, do not suffer lethality due to R. typhi infection. To address if fleas combat rickettsial infection, we characterized the cat flea (Ctenocephalides felis) innate immune response to R. typhi Initially, we determined that R. typhi infects Drosophila cells and increases antimicrobial peptide (AMP) gene expression, indicating immune pathway activation. While bioinformatics analysis of the C. felis transcriptome identified homologs to all of the Drosophila immune deficiency (IMD) and Toll pathway components, an AMP gene expression profile in Drosophila cells indicated IMD pathway activation upon rickettsial infection. Accordingly, we assessed R. typhi-mediated flea IMD pathway activation in vivo using small interfering RNA (siRNA)-mediated knockdown. Knockdown of Relish and Imd increased R. typhi infection levels, implicating the IMD pathway as a critical regulator of R. typhi burden in C. felis These data suggest that targeting the IMD pathway could minimize the spread of R. typhi, and potentially other human pathogens, vectored by fleas.


Asunto(s)
Ctenocephalides/inmunología , Infestaciones por Pulgas/inmunología , Infecciones por Rickettsia/inmunología , Rickettsia typhi/inmunología , Transducción de Señal/inmunología , Siphonaptera/inmunología , Adenosina Monofosfato/metabolismo , Animales , Gatos , Línea Celular , Chlorocebus aethiops , Ctenocephalides/microbiología , Drosophila/microbiología , Infestaciones por Pulgas/microbiología , Expresión Génica/inmunología , Inmunidad Innata/inmunología , Insectos Vectores/inmunología , Insectos Vectores/microbiología , Siphonaptera/microbiología , Tifus Endémico Transmitido por Pulgas/inmunología , Tifus Endémico Transmitido por Pulgas/microbiología , Células Vero
5.
PLoS Pathog ; 11(8): e1005115, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26291822

RESUMEN

Bacterial Sec7-domain-containing proteins (RalF) are known only from species of Legionella and Rickettsia, which have facultative and obligate intracellular lifestyles, respectively. L. pneumophila RalF, a type IV secretion system (T4SS) effector, is a guanine nucleotide exchange factor (GEF) of ADP-ribosylation factors (Arfs), activating and recruiting host Arf1 to the Legionella-containing vacuole. In contrast, previous in vitro studies showed R. prowazekii (Typhus Group) RalF is a functional Arf-GEF that localizes to the host plasma membrane and interacts with the actin cytoskeleton via a unique C-terminal domain. As RalF is differentially encoded across Rickettsia species (e.g., pseudogenized in all Spotted Fever Group species), it may function in lineage-specific biology and pathogenicity. Herein, we demonstrate RalF of R. typhi (Typhus Group) interacts with the Rickettsia T4SS coupling protein (RvhD4) via its proximal C-terminal sequence. RalF is expressed early during infection, with its inactivation via antibody blocking significantly reducing R. typhi host cell invasion. For R. typhi and R. felis (Transitional Group), RalF ectopic expression revealed subcellular localization with the host plasma membrane and actin cytoskeleton. Remarkably, R. bellii (Ancestral Group) RalF showed perinuclear localization reminiscent of ectopically expressed Legionella RalF, for which it shares several structural features. For R. typhi, RalF co-localization with Arf6 and PI(4,5)P2 at entry foci on the host plasma membrane was determined to be critical for invasion. Thus, we propose recruitment of PI(4,5)P2 at entry foci, mediated by RalF activation of Arf6, initiates actin remodeling and ultimately facilitates bacterial invasion. Collectively, our characterization of RalF as an invasin suggests that, despite carrying a similar Arf-GEF unknown from other bacteria, different intracellular lifestyles across Rickettsia and Legionella species have driven divergent roles for RalF during infection. Furthermore, our identification of lineage-specific Arf-GEF utilization across some rickettsial species illustrates different pathogenicity factors that define diverse agents of rickettsial diseases.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Proteínas Bacterianas/metabolismo , Infecciones por Rickettsia/metabolismo , Rickettsia/patogenicidad , Internalización del Virus , Factores de Ribosilacion-ADP/genética , Animales , Proteínas Bacterianas/genética , Línea Celular , Biología Computacional , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Humanos , Immunoblotting , Filogenia , Conformación Proteica , Rickettsia/genética , Rickettsia/metabolismo , Infecciones por Rickettsia/genética , Transfección
6.
Infect Immun ; 84(12): 3496-3506, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27698019

RESUMEN

Rickettsiae are obligate intracellular pathogens that induce their uptake into nonphagocytic cells; however, the events instigating this process are incompletely understood. Importantly, diverse Rickettsia species are predicted to utilize divergent mechanisms to colonize host cells, as nearly all adhesins and effectors involved in host cell entry are differentially encoded in diverse Rickettsia species. One particular effector, RalF, a Sec7 domain-containing protein that functions as a guanine nucleotide exchange factor of ADP-ribosylation factors (Arfs), is critical for Rickettsia typhi (typhus group rickettsiae) entry but pseudogenized or absent from spotted fever group rickettsiae. Secreted early during R. typhi infection, RalF localizes to the host plasma membrane and interacts with host ADP-ribosylation factor 6 (Arf6). Herein, we demonstrate that RalF activates Arf6, a process reliant on a conserved Glu within the RalF Sec7 domain. Furthermore, Arf6 is activated early during infection, with GTP-bound Arf6 localized to the R. typhi entry foci. The regulation of phosphatidylinositol 4-phosphate 5-kinase (PIP5K), which generates PI(4,5)P2, by activated Arf6 is instrumental for bacterial entry, corresponding to the requirement of PI(4,5)P2 for R. typhi entry. PI(3,4,5)P3 is then synthesized at the entry foci, followed by the accumulation of PI(3)P on the short-lived vacuole. Inhibition of phosphoinositide 3-kinases, responsible for the synthesis of PI(3,4,5)P3 and PI(3)P, negatively affects R. typhi infection. Collectively, these results identify RalF as the first bacterial effector to directly activate Arf6, a process that initiates alterations in phosphoinositol metabolism critical for a lineage-specific Rickettsia entry mechanism.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Proteínas Bacterianas/metabolismo , Fosfatidilinositoles/metabolismo , Rickettsia typhi/metabolismo , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/genética , Animales , Proteínas Bacterianas/genética , Chlorocebus aethiops , Regulación de la Expresión Génica/fisiología , Guanosina Trifosfato , Células HeLa , Humanos , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Plásmidos , Unión Proteica , Rickettsia typhi/genética , Células Vero
7.
PLoS Pathog ; 9(6): e1003399, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23818842

RESUMEN

The long-standing proposal that phospholipase A2 (PLA2) enzymes are involved in rickettsial infection of host cells has been given support by the recent characterization of a patatin phospholipase (Pat2) with PLA2 activity from the pathogens Rickettsia prowazekii and R. typhi. However, pat2 is not encoded in all Rickettsia genomes; yet another uncharacterized patatin (Pat1) is indeed ubiquitous. Here, evolutionary analysis of both patatins across 46 Rickettsia genomes revealed 1) pat1 and pat2 loci are syntenic across all genomes, 2) both Pat1 and Pat2 do not contain predicted Sec-dependent signal sequences, 3) pat2 has been pseudogenized multiple times in rickettsial evolution, and 4) ubiquitous pat1 forms two divergent groups (pat1A and pat1B) with strong evidence for recombination between pat1B and plasmid-encoded homologs. In light of these findings, we extended the characterization of R. typhi Pat1 and Pat2 proteins and determined their role in the infection process. As previously demonstrated for Pat2, we determined that 1) Pat1 is expressed and secreted into the host cytoplasm during R. typhi infection, 2) expression of recombinant Pat1 is cytotoxic to yeast cells, 3) recombinant Pat1 possesses PLA2 activity that requires a host cofactor, and 4) both Pat1 cytotoxicity and PLA2 activity were reduced by PLA2 inhibitors and abolished by site-directed mutagenesis of catalytic Ser/Asp residues. To ascertain the role of Pat1 and Pat2 in R. typhi infection, antibodies to both proteins were used to pretreat rickettsiae. Subsequent invasion and plaque assays both indicated a significant decrease in R. typhi infection compared to that by pre-immune IgG. Furthermore, antibody-pretreatment of R. typhi blocked/delayed phagosomal escapes. Together, these data suggest both enzymes are involved early in the infection process. Collectively, our study suggests that R. typhi utilizes two evolutionary divergent patatin phospholipases to support its intracellular life cycle, a mechanism distinguishing it from other rickettsial species.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Toxinas Bacterianas/biosíntesis , Fosfolipasas A2/biosíntesis , Rickettsia typhi/enzimología , Rickettsia typhi/patogenicidad , Tifus Endémico Transmitido por Pulgas/enzimología , Animales , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Dominio Catalítico , Chlorocebus aethiops , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/fisiología , Mutagénesis Sitio-Dirigida , Inhibidores de Fosfolipasa A2/farmacología , Fosfolipasas A2/genética , Rickettsia typhi/genética , Tifus Endémico Transmitido por Pulgas/genética , Tifus Endémico Transmitido por Pulgas/microbiología , Tifus Endémico Transmitido por Pulgas/patología , Células Vero
8.
PLoS Pathog ; 8(8): e1002856, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22912578

RESUMEN

Surface proteins of the obligate intracellular bacterium Rickettsia typhi, the agent of murine or endemic typhus fever, comprise an important interface for host-pathogen interactions including adherence, invasion and survival in the host cytoplasm. In this report, we present analyses of the surface exposed proteins of R. typhi based on a suite of predictive algorithms complemented by experimental surface-labeling with thiol-cleavable sulfo-NHS-SS-biotin and identification of labeled peptides by LC MS/MS. Further, we focus on proteins belonging to the surface cell antigen (Sca) autotransporter (AT) family which are known to be involved in rickettsial infection of mammalian cells. Each species of Rickettsia has a different complement of sca genes in various states; R. typhi, has genes sca1 thru sca5. In silico analyses indicate divergence of the Sca paralogs across the four Rickettsia groups and concur with previous evidence of positive selection. Transcripts for each sca were detected during infection of L929 cells and four of the five Sca proteins were detected in the surface proteome analysis. We observed that each R. typhi Sca protein is expressed during in vitro infections and selected Sca proteins were expressed during in vivo infections. Using biotin-affinity pull down assays, negative staining electron microscopy, and flow cytometry, we demonstrate that the Sca proteins in R. typhi are localized to the surface of the bacteria. All Scas were detected during infection of L929 cells by immunogold electron microscopy. Immunofluorescence assays demonstrate that Scas 1-3 and 5 are expressed in the spleens of infected Sprague-Dawley rats and Scas 3, 4 and 5 are expressed in cat fleas (Ctenocephalides felis). Sca proteins may be crucial in the recognition and invasion of different host cell types. In short, continuous expression of all Scas may ensure that rickettsiae are primed i) to infect mammalian cells should the flea bite a host, ii) to remain infectious when extracellular and iii) to infect the flea midgut when ingested with a blood meal. Each Sca protein may be important for survival of R. typhi and the lack of host restricted expression may indicate a strategy of preparedness for infection of a new host.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Proteoma/metabolismo , Rickettsia typhi/metabolismo , Tifus Endémico Transmitido por Pulgas/metabolismo , Animales , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Línea Celular , Ctenocephalides/microbiología , Regulación Bacteriana de la Expresión Génica/genética , Ratones , Proteoma/genética , Ratas , Ratas Sprague-Dawley , Rickettsia typhi/genética , Rickettsia typhi/patogenicidad , Tifus Endémico Transmitido por Pulgas/genética
9.
bioRxiv ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38766217

RESUMEN

Some arthropod-borne obligate intracellular rickettsiae are among the most virulent human pathogens. Upon entry, Rickettsia species modulate immune (e.g., macrophages; MΦ) and non-immune cell (e.g., endothelial cells) responses to create a habitable environment for host colonization. In particular, MΦ play a crucial role in either terminating an infection at an early stage or succumbing to bacterial replication and colonization. However, our understanding on how Rickettsia species modulate crucial cellular processes within MΦ, including phagocytosis, and host cell defenses, to establish an intracytosolic replication niche, remain poorly defined. In this study, we describe a previously unappreciated mechanism, in which pathogenic rickettsiae infection is mediated by the phosphatidylserine (PS)-binding receptor, CD300f. We found that CD300f -/- mice but not wild-type (WT) C57BL/6J mice were protected against R. typhi - or R. rickettsii [ Shelia Smith ]-induced fatal rickettsiosis. Adoptative transfer studies further revealed that CD300f-expressing bone marrow-derived macrophages (BMDMΦ) are important mediators to control rickettsiosis in WT mice. Mechanistical analysis, using WT or CD300f -/- BMDMΦ, showed that CD300f facilitates the engulfment of both pathogenic R. typhi and R. rickettsii species, likely via a PS-mediated mechanism. Furthermore, CD300f was involved in the intracytosolic replication of both pathogenic rickettsiae by differentially modulating the anti-inflammatory Interleukin (IL)-10 and anti-rickettsial IL-1α and IL-1ß cytokine responses. Collectively, our findings describe a previously unappreciated role for the efferocytic receptor, CD300f, to facilitate engulfment and the intracellular survival of pathogenic rickettsiae within the host. Significance Statement: Vector-borne diseases, which are transmitted by hematophagous arthropods, like ticks and fleas, present a perilous threat to public health. In fact, tick- and flea-borne rickettsial diseases are on the rise globally and our current inadequate understanding on how Rickettsia interacts with their mammalian host has significantly impaired the development of effective interventions against pathogenic rickettsial infections. Here, we identified the phosphatidylserine (PS)-receptor, CD300f, as an important mediator of pathogenic rickettsiae infection in vivo and in vitro . Specifically, we showed that CD300f-expressing macrophages facilitate rickettsial infection by differentially modulating anti-inflammatory Interleukin (IL)-10 and anti-rickettsial IL-1α and IL-1ß cytokine responses. In sum, our data described CD300f as an important regulator of rickettsial infection and may present a target for therapeutic intervention.

10.
Microbiol Spectr ; 11(6): e0279123, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37819111

RESUMEN

IMPORTANCE: Rickettsia spp. are intracellular bacterial parasites of a wide range of arthropod and vertebrate hosts. Some rickettsiae are responsible for several severe human diseases globally. One interesting feature of these pathogens is their ability to exploit host cytosolic defense responses to their benefits. However, the precise mechanism by which pathogenic Rickettsia spp. elude host defense responses remains unclear. Here, we observed that pathogenic Rickettsia typhi and Rickettsia rickettsii (Sheila Smith [SS]), but not non-pathogenic Rickettsia montanensis, become ubiquitinated and induce autophagy upon entry into macrophages. Moreover, unlike R. montanensis, R. typhi and R. rickettsii (SS) colocalized with LC3B but not with Lamp2 upon host cell entry. Finally, we observed that both R. typhi and R. rickettsii (SS), but not R. montanensis, reduce pro-inflammatory interleukin-1 (IL-1) responses, likely via an autophagy-mediated mechanism. In summary, we identified a previously unappreciated pathway by which both pathogenic R. typhi and R. rickettsii (SS) become ubiquitinated, induce autophagy, avoid autolysosomal destruction, and reduce microbicidal IL-1 cytokine responses to establish an intracytosolic niche in macrophages.


Asunto(s)
Interleucina-1 , Rickettsia , Humanos , Citocinas , Rickettsia/fisiología , Macrófagos/microbiología , Autofagia
11.
J Bacteriol ; 194(18): 4920-32, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22773786

RESUMEN

Rickettsia typhi, the causative agent of murine (endemic) typhus, is an obligate intracellular pathogen with a life cycle involving both vertebrate and invertebrate hosts. In this study, we characterized a gene (RT0218) encoding a C-terminal ankyrin repeat domain-containing protein, named Rickettsia ankyrin repeat protein 1 (RARP-1), and identified it as a secreted effector protein of R. typhi. RT0218 showed differential transcript abundance at various phases of R. typhi intracellular growth. RARP-1 was secreted by R. typhi into the host cytoplasm during in vitro infection of mammalian cells. Transcriptional analysis revealed that RT0218 was cotranscribed with adjacent genes RT0217 (hypothetical protein) and RT0216 (TolC) as a single polycistronic mRNA. Given one of its functions as a facilitator of extracellular protein secretion in some Gram-negative bacterial pathogens, we tested the possible role of TolC in the secretion of RARP-1. Using Escherichia coli C600 and an isogenic tolC insertion mutant as surrogate hosts, our data demonstrate that RARP-1 is secreted in a TolC-dependent manner. Deletion of either the N-terminal signal peptide or the C-terminal ankyrin repeats abolished RARP-1 secretion by wild-type E. coli. Importantly, expression of R. typhi tolC in the E. coli tolC mutant restored the secretion of RARP-1, suggesting that TolC has a role in RARP-1 translocation across the outer membrane. This work implies that the TolC component of the putative type 1 secretion system of R. typhi is involved in the secretion process of RARP-1.


Asunto(s)
Repetición de Anquirina , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Rickettsia typhi/metabolismo , Animales , Proteínas de la Membrana Bacteriana Externa/genética , Línea Celular , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Eliminación de Gen , Perfilación de la Expresión Génica , Prueba de Complementación Genética , Humanos , Proteínas de Transporte de Membrana/genética , Mutagénesis Insercional , Transcripción Genética
12.
Infect Immun ; 79(1): 321-9, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20956566

RESUMEN

A defining facet of tick-Rickettsia symbioses is the molecular strategy employed by each partner to ensure its own survival. Ticks must control rickettsial colonization to avoid immediate death. In the current study, we show that rickettsial abundance in the tick midgut increases once the expression of a Kunitz-type serine protease inhibitor from the American dog tick (Dermacentor variabilis) (DvKPI) is suppressed by small interfering RNA (siRNA). A series of in vitro invasion assays suggested that DvKPI limits rickettsial colonization during host cell entry. Interestingly, we observed that DvKPI associates with rickettsiae in vitro as well as in the tick midgut. Collectively, our data demonstrate that DvKPI limits host cell invasion by Rickettsia montanensis, possibly through an association with the bacterium.


Asunto(s)
Vectores Artrópodos/enzimología , Dermacentor/microbiología , Inhibidores de Proteasas/metabolismo , Rickettsia/fisiología , Animales , Línea Celular , Dermacentor/enzimología , Tracto Gastrointestinal/enzimología , Tracto Gastrointestinal/microbiología , Interacciones Huésped-Patógeno , Interferencia de ARN , ARN Interferente Pequeño
13.
Pathog Dis ; 79(4)2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33705517

RESUMEN

Bacterial infection is a highly complex biological process involving a dynamic interaction between the invading microorganism and the host. Specifically, intracellular pathogens seize control over the host cellular processes including membrane dynamics, actin cytoskeleton, phosphoinositide metabolism, intracellular trafficking and immune defense mechanisms to promote their host colonization. To accomplish such challenging tasks, virulent bacteria deploy unique species-specific secreted effectors to evade and/or subvert cellular defense surveillance mechanisms to establish a replication niche. However, despite superficially similar infection strategies, diverse Rickettsia species utilize different effector repertoires to promote host colonization. This review will discuss our current understandings on how different Rickettsia species deploy their effector arsenal to manipulate host cellular processes to promote their intracytosolic life within the mammalian host.


Asunto(s)
Vectores Artrópodos/microbiología , Interacciones Huésped-Patógeno , Infecciones por Rickettsia/microbiología , Rickettsia/clasificación , Rickettsia/patogenicidad , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/microbiología , Animales , Especificidad del Huésped , Humanos , Redes y Vías Metabólicas , Ácaros/microbiología , Fosfatidilinositoles/metabolismo , Phthiraptera/microbiología , Filogenia , Rickettsia/crecimiento & desarrollo , Rickettsia/metabolismo , Infecciones por Rickettsia/genética , Infecciones por Rickettsia/patología , Siphonaptera/microbiología , Especificidad de la Especie , Garrapatas/microbiología
14.
mBio ; 13(1): e0291821, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35130729

RESUMEN

Rickettsia species (spp.) are strict obligate intracellular bacteria, some of which are pathogenic in their mammalian host, including humans. One critical feature of these stealthy group of pathogens is their ability to manipulate hostile cytosolic environments to their benefits. Although our understanding of Rickettsia cell biology and pathogenesis is evolving, the mechanisms by which pathogenic Rickettsia spp. evade host innate immune detection remain elusive. Here, we show that disease severity in wild-type (WT) C57BL/6J mice infected with Rickettsia typhi (the etiologic agent of murine typhus) and Rickettsia rickettsii (the etiologic agent of Rocky Mountain spotted fever), but not with the nonpathogenic species Rickettsia montanensis, correlated with levels of bacterial burden as detected in the spleens of mice, as well as the serum concentrations of proinflammatory cytokine interleukin-1α (IL-1α) and, to a lesser extent, IL-1ß. Antibody-mediated neutralization of IL-1α confirmed a key role in controlling mortality rates and bacterial burdens of rickettsia-infected WT mice. As macrophages are a primary source of both IL-1α and IL-1ß cytokines, we determined the mechanism of the antirickettsial activities using bone marrow-derived macrophages. We found that pathogenic R. typhi and R. rickettsii, but not nonpathogenic R. montanensis, eluded pro-IL-1α induction and benefited predominantly from the reduced IL-1α secretion, via a caspase-11-gasdermin D (Gsdmd)-dependent pathway, to facilitate intracytosolic replication. Adoptive transfer experiments identified that IL-1α secretion by macrophages was critical for controlling rickettsiosis in WT mice. In sum, we identified a previously unappreciated pathway by which pathogenic, unlike nonpathogenic, rickettsiae preferentially target the caspase-11-Gsdmd-IL-1α signaling axis in macrophages, thus supporting their replication within the host. IMPORTANCE Currently, no vaccines are available to prevent rickettsioses, while vector-borne rickettsial infections in humans are on the rise globally. In fact, the insufficient understanding of how pathogenic Rickettsia species circumvent host immune defense mechanisms has significantly hindered the development of more effective therapeutics. Here, we identified a previously unappreciated role for the caspase-11-Gsdmd-IL-1α signaling axis in limiting the replication of pathogenic R. rickettsia and R. typhi species in murine macrophages and wild-type (WT) C57BL/6J mice. Adoptive transfer studies further identified IL-1α-secreting macrophages as critical mediators in controlling rickettsial infection in WT mice. Collectively, these findings provide insight into the potential mechanism of how pathogenic, but not nonpathogenic, Rickettsia spp. benefit from a reduction in the caspase-11-Gsdmd-mediated release of IL-1α to support host colonization.


Asunto(s)
Inflamasomas , Rickettsia , Humanos , Animales , Ratones , Inflamasomas/metabolismo , Interleucina-1alfa , Ratones Endogámicos C57BL , Caspasas , Mamíferos/metabolismo
15.
mSphere ; 6(3)2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33952661

RESUMEN

Species of Rickettsia (Alphaproteobacteria: Rickettsiales) are obligate intracellular parasites of a wide range of eukaryotes, with recognized arthropod-borne human pathogens belonging to the transitional group (TRG), typhus group (TG), and spotted fever group (SFG) rickettsiae. Growing in the host cytosol, rickettsiae pilfer numerous metabolites to make a typical Gram-negative bacterial cell envelope. The O-antigen of rickettsial lipopolysaccharide (LPS) is immunogenic and has been shown to tether the S-layer to the rickettsial surface; however, little is known about the structure and immunogenicity of the Rickettsia lipid A moiety. The structure of lipid A, the membrane anchor of LPS, affects the ability of this molecule to interact with components of the host innate immune system, specifically the MD-2/TLR4 receptor complex. To dissect the host responses that can occur during Rickettsia in vitro and in vivo infection, structural analysis of Rickettsia lipid A is needed. Lipid A was extracted from four Rickettsia species and structurally analyzed. R. akari (TRG), R. typhi (TG), and R. montanensis (SFG) produced a similar structure, whereas R. rickettsii (SFG) altered the length of a secondary acyl group. While all structures have longer acyl chains than known highly inflammatory hexa-acylated lipid A structures, the R. rickettsii modification should differentially alter interactions with the hydrophobic internal pocket in MD2. The significance of these characteristics toward inflammatory potential as well as membrane dynamics between arthropod and vertebrate cellular environments warrants further investigation. Our work adds lipid A to the secretome and O-antigen as variable factors possibly correlating with phenotypically diverse rickettsioses.IMPORTANCE Spikes in rickettsioses occur as deforestation, urbanization, and homelessness increase human exposure to blood-feeding arthropods. Still, effective Rickettsia vaccines remain elusive. Recent studies have determined that Rickettsia lipopolysaccharide anchors the protective S-layer to the bacterial surface and elicits bactericidal antibodies. Furthermore, growing immunological evidence suggests vertebrate sensors (MD-2/TLR4 and noncanonical inflammasome) typically triggered by the lipid A portion of lipopolysaccharide are activated during Rickettsia infection. However, the immunopotency of Rickettsia lipid A is unknown due to poor appreciation for its structure. We determined lipid A structures for four distinct rickettsiae, revealing longer acyl chains relative to highly inflammatory bacterial lipid A. Surprisingly, lipid A of the Rocky Mountain spotted fever agent deviates in structure from other rickettsiae. Thus, lipid A divergence may contribute to variable disease phenotypes, sounding an alarm for determining its immunopotency and possible utility (i.e., as an adjuvant or anti-inflammatory) for development of more prudent rickettsiacidal therapies.


Asunto(s)
Lípido A/química , Rickettsia/química , Rickettsia/clasificación , Humanos , Lípido A/clasificación , Rickettsia/patogenicidad , Infecciones por Rickettsia/microbiología
16.
J Bacteriol ; 192(13): 3294-303, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20435729

RESUMEN

Phospholipase A(2) (PLA(2)) has long been proposed to be involved in rickettsial entry into host cells, escape from the phagosome to evade destruction by lysosomal exposure, and lysis of the host cells. However, the corresponding rickettsial gene(s) encoding a protein with PLA(2) activity has not been identified or functionally characterized. Here, we report that the Rickettsia typhi genome possesses two genes encoding patatin-like PLA(2) proteins, RT0590 and RT0522. Sequence analysis of RT0522 and RT0590 reveals the presence of the conserved motifs essential for PLA(2) activity. Transcriptional analysis indicates that RT0522, but not RT0590, is transcribed at all stages of intracellular growth of R. typhi in Vero cells. The differential gene expression pattern of RT0522 at various stages of growth suggests its potential role during R. typhi infection of host cells. In silico, RT0522 is predicted to be noncytoplasmic and its gene does not encode a recognizable signal peptide sequence. However, our data indicate that RT0522 is secreted into the host cytoplasm. In addition, we observe that RT0522 protein expression is cytotoxic to both yeast and Vero cells. Importantly, we demonstrate that recombinant RT0522 possesses phospholipase A activity that requires a eukaryotic host cofactor for activation. Both cytotoxicity and phospholipase A activity associated with RT0522 were reduced by PLA(2) inhibitors. Site-directed mutagenesis of predicted catalytic Ser/Asp residues of RT0522 also eliminates cytotoxicity and phospholipase A activity. To our knowledge, RT0522 is the first protein identified from Rickettsia typhi with functional phospholipase A activity.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fosfolipasas A2/metabolismo , Proteínas Recombinantes/metabolismo , Rickettsia typhi/enzimología , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Chlorocebus aethiops , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fosfolipasas A2/química , Fosfolipasas A2/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Células Vero
17.
mBio ; 11(3)2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32546622

RESUMEN

To establish a habitable intracellular niche, various pathogenic bacteria secrete effectors that target intracellular trafficking and modulate phosphoinositide (PI) metabolism. Murine typhus, caused by the obligate intracellular bacterium Rickettsia typhi, remains a severe disease in humans. However, the mechanisms by which R. typhi effector molecules contribute to internalization by induced phagocytosis and subsequent phagosomal escape into the cytosol to facilitate the intracellular growth of the bacteria remain ill-defined. Here, we characterize a new molecule, Risk1, as a phosphatidylinositol 3-kinase (PI3K) secreted effector and the first bacterial secretory kinase with both class I and III PI3K activities. Inactivation of Risk1 PI3K activities reduced the phosphorylation of phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate within the host, which consequently diminished host colonization by R. typhi During infection, Risk1 targets the Rab5-EEA1-phosphatidylinositol 3-phosphate [PI(3)P] signaling axis to promote bacterial phagosomal escape. Subsequently, R. typhi undergoes ubiquitination and induces host autophagy; however, maturation to autolysosomes is subverted to support intracellular growth. Intriguingly, only enzymatically active Risk1 binds the Beclin-1 core complex and contributes to R. typhi-induced autophagosome formation. In sum, our data suggest that Risk1, with dual class I and class III PI3K activities, alters host PI metabolism and consequently subverts intracellular trafficking to facilitate intracellular growth of R. typhiIMPORTANCERickettsia species are Gram-negative obligate intracellular bacteria that infect a wide range of eukaryotes and vertebrates. In particular, human body louse-borne Rickettsia prowazekii and flea-borne Rickettsia typhi have historically plagued humankind and continue to reemerge globally. The unavailability of vaccines and limited effectiveness of antibiotics late in infection place lethality rates up to 30%, highlighting the need to elucidate the mechanisms of Rickettsia pathogenicity in greater detail. Here, we characterize a new effector, Risk1, as a secreted phosphatidylinositol 3-kinase (PI3K) with unique dual class I and class III activities. Risk1 is required for host colonization, and its vacuolar phosphatidylinositol 3-phosphate generation modulates endosomal trafficking to arrest autophagosomal maturation. Collectively, Risk1 facilitates R. typhi growth by altering phosphoinositide metabolism and subverting intracellular trafficking.


Asunto(s)
Proteínas Bacterianas/genética , Espacio Intracelular/microbiología , Fagosomas/microbiología , Fosfatidilinositol 3-Quinasa/genética , Rickettsia typhi/genética , Rickettsia typhi/patogenicidad , Animales , Proteínas Bacterianas/metabolismo , Chlorocebus aethiops , Endosomas/metabolismo , Células HeLa , Humanos , Ratones , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositoles/metabolismo , Transducción de Señal , Células Vero
18.
J Bacteriol ; 190(18): 6234-42, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18641131

RESUMEN

As obligate intracellular, vector-borne bacteria, rickettsiae must adapt to both mammalian and arthropod host cell environments. Deciphering the molecular mechanisms of the interactions between rickettsiae and their host cells has largely been hindered by the genetic intractability of these organisms; however, research in other gram-negative pathogens has demonstrated that many bacterial determinants of attachment, entry, and pathogenesis are extracytoplasmic proteins. The annotations of several rickettsial genomes indicate the presence of homologs of the Sec translocon, the major route for bacterial protein secretion from the cytoplasm. For Rickettsia typhi, the etiologic agent of murine typhus, homologs of the Sec-translocon-associated proteins LepB, SecA, and LspA have been functionally characterized; therefore, the R. typhi Sec apparatus represents a mechanism for the secretion of rickettsial proteins, including virulence factors, into the extracytoplasmic environment. Our objective was to characterize such Sec-dependent R. typhi proteins in the context of a mammalian host cell infection. By using the web-based programs LipoP, SignalP, and Phobius, a total of 191 R. typhi proteins were predicted to contain signal peptides targeting them to the Sec translocon. Of these putative signal peptides, 102 were tested in an Escherichia coli-based alkaline phosphatase (PhoA) gene fusion system. Eighty-four of these candidates exhibited signal peptide activity in E. coli, and transcriptional analysis indicated that at least 54 of the R. typhi extracytoplasmic proteins undergo active gene expression during infections of HeLa cells. This work highlights a number of interesting proteins possibly involved in rickettsial growth and virulence in mammalian cells.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Señales de Clasificación de Proteína , Rickettsia typhi/genética , Rickettsia typhi/metabolismo , Adenosina Trifosfatasas/genética , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Secuencia de Bases , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Perfilación de la Expresión Génica , Genoma Bacteriano , Células HeLa , Humanos , Proteínas de Transporte de Membrana/genética , Transporte de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Rickettsia typhi/patogenicidad , Canales de Translocación SEC , Proteína SecA , Tifus Endémico Transmitido por Pulgas/microbiología , Virulencia
19.
Infect Immun ; 76(11): 5429-35, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18779339

RESUMEN

Here we report the novel bacteriostatic function of a five-domain Kunitz-type serine protease inhibitor (KPI) from the tick Dermacentor variabilis. As ticks feed, they release anticoagulants, anti-inflammatory and immunosuppressive molecules that mediate the formation of the feeding lesion on the mammalian host. A number of KPIs have been isolated and characterized from tick salivary gland extracts. Interestingly, we observe little D. variabilis KPI gene expression in the salivary gland and abundant expression in the midgut. However, our demonstration of D. variabilis KPI's anticoagulant properties indicates that D. variabilis KPI may be important for blood meal digestion in the midgut. In addition to facilitating long-term attachment and blood meal acquisition, gene expression studies of Drosophila, legumes, and ticks suggest that KPIs play some role in the response to microbial infection. Similarly, in this study, we show that challenge of D. variabilis with the spotted fever group rickettsia, Rickettsia montanensis, results in sustained D. variabilis KPI gene expression in the midgut. Furthermore, our in vitro studies show that D. variabilis KPI limits rickettsial colonization of L929 cells (mouse fibroblasts), implicating D. variabilis KPI as a bacteriostatic protein, a property that may be related to D. variabilis KPI's trypsin inhibitory capability. This work suggests that anticoagulants play some role in the midgut during feeding and that D. variabilis KPI may be involved as part of the tick's defense response to rickettsiae.


Asunto(s)
Dermacentor/enzimología , Dermacentor/genética , Rickettsia/patogenicidad , Inhibidor de la Tripsina de Soja de Kunitz/genética , Inhibidor de la Tripsina de Soja de Kunitz/metabolismo , Secuencia de Aminoácidos , Animales , Western Blotting , Femenino , Fibroblastos/microbiología , Regulación de la Expresión Génica , Ratones , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rickettsia/inmunología , Infecciones por Rickettsia/inmunología , Homología de Secuencia
20.
BMC Microbiol ; 8: 61, 2008 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-18412961

RESUMEN

BACKGROUND: The ability of rickettsiae to survive in multiple eukaryotic host environments provides a good model for studying pathogen-host molecular interactions. Rickettsia typhi, the etiologic agent of murine typhus, is a strictly intracellular gram negative alpha-proteobacterium, which is transmitted to humans by its arthropod vector, the oriental rat flea, Xenopsylla cheopis. Thus, R. typhi must cycle between mammalian and flea hosts, two drastically different environments. We hypothesize that temperature plays a role in regulating host-specific gene expression, allowing R. typhi to survive in mammalian and arthropod hosts. In this study, we used Affymetrix microarrays to screen for temperature-induced genes upon a temperature shift from 37 degrees C to 25 degrees C, mimicking the two different host temperatures in vitro. RESULTS: Temperature-responsive genes belonged to multiple functional categories including among others, transcription, translation, posttranslational modification/protein turnover/chaperones and intracellular trafficking and secretion. A large number of differentially expressed genes are still poorly characterized, and either have no known function or are not in the COG database. The microarray results were validated with quantitative real time RT-PCR. CONCLUSION: This microarray screen identified various genes that were differentially expressed upon a shift in temperature from 37 degrees C to 25 degrees C. Further characterization of the identified genes may provide new insights into the ability of R. typhi to successfully transition between its mammalian and arthropod hosts.


Asunto(s)
Perfilación de la Expresión Génica , Genes Bacterianos , Genoma Bacteriano , Análisis de Secuencia por Matrices de Oligonucleótidos , Rickettsia typhi/genética , Animales , Proteínas Bacterianas/genética , Línea Celular , Regulación Bacteriana de la Expresión Génica , Proteínas de Choque Térmico/genética , Ratones , Chaperonas Moleculares/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rickettsia typhi/metabolismo , Temperatura , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA