Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Biol Chem ; 298(2): 101557, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34974059

RESUMEN

It is well established that the antitoxins of toxin-antitoxin (TA) systems are selectively degraded by bacterial proteases in response to stress. However, how distinct stressors result in the selective degradation of specific antitoxins remain unanswered. MqsRA is a TA system activated by various stresses, including oxidation. Here, we reconstituted the Escherichia coli ClpXP proteolytic machinery in vitro to monitor degradation of MqsRA TA components. We show that the MqsA antitoxin is a ClpXP proteolysis substrate, and that its degradation is regulated by both zinc occupancy in MqsA and MqsR toxin binding. Using NMR chemical shift perturbation mapping, we show that MqsA is targeted directly to ClpXP via the ClpX substrate targeting N-domain, and ClpX mutations that disrupt N-domain binding inhibit ClpXP-mediated degradation in vitro. Finally, we discovered that MqsA contains a cryptic N-domain recognition sequence that is accessible only in the absence of zinc and MqsR toxin, both of which stabilize the MqsA fold. This recognition sequence is transplantable and sufficient to target a fusion protein for degradation in vitro and in vivo. Based on these results, we propose a model in which stress selectively targets nascent and zinc-free MqsA, resulting in exposure of the ClpX recognition motif for ClpXP-mediated degradation.


Asunto(s)
Antitoxinas , Proteínas de Unión al ADN , Endopeptidasa Clp , Proteínas de Escherichia coli , Escherichia coli , Zinc , Antitoxinas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Endopeptidasa Clp/genética , Endopeptidasa Clp/metabolismo , Escherichia coli/enzimología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Oxidación-Reducción , Péptido Hidrolasas/metabolismo , Proteolisis , Zinc/metabolismo
2.
Heliyon ; 10(5): e27263, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38463884

RESUMEN

Compressors are a significant source of noise in various industries. Silencers can be utilized to mitigate this noise. This study aims to design and construct an expansion silencer that can effectively reduce the pulsating noise produced by a reciprocating compressor. This study employed a model-experimental approach to investigate the performance of four different sizes of expansion silencers in controlling the pulsating noise in the suction part of the compressor. Initially, the silencers' sound transmission loss and pressure loss were simulated using the finite element method with COMSOL software. Subsequently, the sound transmission loss of the silencers was measured according to the E261109 standard using an impedance tube. Finally, the pressure loss of the silencers was measured using a Pitot tube upstream and downstream of the silencer at various flow rates. The results of the modeling showed that increasing the diameter of the silencer leads to an increase in transmission loss at all frequencies. Additionally, raising the length of the silencer only increased the number of sound transmission loss peaks in the frequency bandwidth without significant change in sound transmission loss. Furthermore, the results of the experimental measurements with an impedance tube revealed that increasing the diameter results in increased transmission loss, while increasing the silencer length leads to an increase in the number of transmission loss peaks without altering the transmission loss. Moreover, the modeling and experimental pressure loss results indicated that increasing the diameter of the expansion chamber causes an increase in pressure loss, while increasing the length of the expansion chamber results in a minor change in pressure loss. Finally, the research results showed relatively good agreement between modeling and experimental outcomes.

3.
Protein Sci ; 31(5): e4306, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35481648

RESUMEN

The essential bacterial division protein in Escherichia coli, FtsZ, assembles into the FtsZ-ring at midcell and recruits other proteins to the division site to promote septation. A region of the FtsZ amino acid sequence that links the conserved polymerization domain to a C-terminal protein interaction site was predicted to be intrinsically disordered and has been implicated in modulating spacing and architectural arrangements of FtsZ filaments. While the majority of cell division proteins that directly bind to FtsZ engage either the polymerization domain or the C-terminal interaction site, ClpX, the recognition and unfolding component of the bacterial ClpXP proteasome, has a secondary interaction with the predicted intrinsically disordered region (IDR) of FtsZ when FtsZ is polymerized. Here, we use NMR spectroscopy and reconstituted degradation reactions in vitro to demonstrate that this linker region is indeed disordered in solution and, further, that amino acids in the IDR of FtsZ enhance the degradation in polymer-guided interactions.


Asunto(s)
Proteínas de Escherichia coli , Péptido Hidrolasas , Proteínas Bacterianas/química , Proteínas del Citoesqueleto/metabolismo , Endopeptidasa Clp/genética , Endopeptidasa Clp/metabolismo , Elementos de Facilitación Genéticos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Péptido Hidrolasas/metabolismo , Polímeros/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA