Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 596(7870): 138-142, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34290405

RESUMEN

In early mitosis, the duplicated chromosomes are held together by the ring-shaped cohesin complex1. Separation of chromosomes during anaphase is triggered by separase-a large cysteine endopeptidase that cleaves the cohesin subunit SCC1 (also known as RAD212-4). Separase is activated by degradation of its inhibitors, securin5 and cyclin B6, but the molecular mechanisms of separase regulation are not clear. Here we used cryogenic electron microscopy to determine the structures of human separase in complex with either securin or CDK1-cyclin B1-CKS1. In both complexes, separase is inhibited by pseudosubstrate motifs that block substrate binding at the catalytic site and at nearby docking sites. As in Caenorhabditis elegans7 and yeast8, human securin contains its own pseudosubstrate motifs. By contrast, CDK1-cyclin B1 inhibits separase by deploying pseudosubstrate motifs from intrinsically disordered loops in separase itself. One autoinhibitory loop is oriented by CDK1-cyclin B1 to block the catalytic sites of both separase and CDK19,10. Another autoinhibitory loop blocks substrate docking in a cleft adjacent to the separase catalytic site. A third separase loop contains a phosphoserine6 that promotes complex assembly by binding to a conserved phosphate-binding pocket in cyclin B1. Our study reveals the diverse array of mechanisms by which securin and CDK1-cyclin B1 bind and inhibit separase, providing the molecular basis for the robust control of chromosome segregation.


Asunto(s)
Proteína Quinasa CDC2/química , Proteína Quinasa CDC2/metabolismo , Ciclina B1/química , Ciclina B1/metabolismo , Securina/química , Securina/metabolismo , Separasa/química , Separasa/metabolismo , Secuencias de Aminoácidos , Proteína Quinasa CDC2/antagonistas & inhibidores , Proteína Quinasa CDC2/ultraestructura , Quinasas CDC2-CDC28/química , Quinasas CDC2-CDC28/metabolismo , Quinasas CDC2-CDC28/ultraestructura , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica , Microscopía por Crioelectrón , Ciclina B1/ultraestructura , Proteínas de Unión al ADN/metabolismo , Humanos , Modelos Moleculares , Fosfoserina/metabolismo , Unión Proteica , Dominios Proteicos , Securina/ultraestructura , Separasa/antagonistas & inhibidores , Separasa/ultraestructura , Especificidad por Sustrato
2.
J Biol Chem ; 298(11): 102438, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36049521

RESUMEN

Triphosphate tunnel metalloenzymes (TTMs) are found in all biological kingdoms and have been characterized in microorganisms and animals. Members of the TTM family have divergent biological functions and act on a range of triphosphorylated substrates (RNA, thiamine triphosphate, and inorganic polyphosphate). TTMs in plants have received considerably less attention and are unique in that some homologs harbor additional domains including a P-loop kinase and transmembrane domain. Here, we report on structural and functional aspects of the multimodular TTM1 and TTM2 of Arabidopsis thaliana. Our tissue and cellular microscopy studies show that both AtTTM1 and AtTTM2 are expressed in actively dividing (meristem) tissue and are tail-anchored proteins at the outer mitochondrial membrane, mediated by the single C-terminal transmembrane domain, supporting earlier studies. In addition, we reveal from crystal structures of AtTTM1 in the presence and absence of a nonhydrolyzable ATP analog a catalytically incompetent TTM tunnel domain tightly interacting with the P-loop kinase domain that is locked in an inactive conformation. Our structural comparison indicates that a helical hairpin may facilitate movement of the TTM domain, thereby activating the kinase. Furthermore, we conducted genetic studies to show that AtTTM2 is important for the developmental transition from the vegetative to the reproductive phase in Arabidopsis, whereas its closest paralog AtTTM1 is not. We demonstrate through rational design of mutations based on the 3D structure that both the P-loop kinase and TTM tunnel modules of AtTTM2 are required for the developmental switch. Together, our results provide insight into the structure and function of plant TTM domains.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Metaloproteínas , Animales , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Polifosfatos , Metaloproteínas/química , Ácido Anhídrido Hidrolasas/metabolismo
3.
PLoS Biol ; 17(1): e3000122, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30657780

RESUMEN

PolD is an archaeal replicative DNA polymerase (DNAP) made of a proofreading exonuclease subunit (DP1) and a larger polymerase catalytic subunit (DP2). Recently, we reported the individual crystal structures of the DP1 and DP2 catalytic cores, thereby revealing that PolD is an atypical DNAP that has all functional properties of a replicative DNAP but with the catalytic core of an RNA polymerase (RNAP). We now report the DNA-bound cryo-electron microscopy (cryo-EM) structure of the heterodimeric DP1-DP2 PolD complex from Pyrococcus abyssi, revealing a unique DNA-binding site. Comparison of PolD and RNAPs extends their structural similarities and brings to light the minimal catalytic core shared by all cellular transcriptases. Finally, elucidating the structure of the PolD DP1-DP2 interface, which is conserved in all eukaryotic replicative DNAPs, clarifies their evolutionary relationships with PolD and sheds light on the domain acquisition and exchange mechanism that occurred during the evolution of the eukaryotic replisome.


Asunto(s)
Proteínas de Unión al ADN/ultraestructura , Factor de Transcripción DP1/ultraestructura , Factores de Transcripción/ultraestructura , Secuencia de Aminoácidos/genética , Sitios de Unión/genética , Dominio Catalítico , Microscopía por Crioelectrón/métodos , ADN/genética , Replicación del ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/ultraestructura , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/ultraestructura , Dominios Proteicos/genética , Subunidades de Proteína/metabolismo , Pyrococcus abyssi/metabolismo , Pyrococcus abyssi/ultraestructura , Factor de Transcripción DP1/metabolismo , Factores de Transcripción/metabolismo
4.
J Am Chem Soc ; 143(45): 18932-18940, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34739233

RESUMEN

Stapled peptides with an enforced α-helical conformation have been shown to overcome major limitations in the development of short peptides targeting protein-protein interactions (PPIs). While the growing arsenal of methodologies to staple peptides facilitates their preparation, stapling methodologies are not broadly embraced in synthetic library screening. Herein, we report a strategy leveraged on hybridization of short PNA-peptide conjugates wherein nucleobase driven assembly facilitates ligation of peptide fragments and constrains the peptide's conformation into an α-helix. Using native chemical ligation, we show that a mixture of peptide fragments can be combinatorially ligated and used directly in affinity selection against a target of interest. This approach was exemplified with a focused library targeting the p-53/MDM2 interaction. One hundred peptides were obtained in a one-pot ligation reaction, selected by affinity against MDM2 immobilized on beads, and the best binders were identified by mass spectrometry.


Asunto(s)
Ácidos Nucleicos de Péptidos/metabolismo , Péptidos/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Humanos , Hibridación de Ácido Nucleico , Biblioteca de Péptidos , Ácidos Nucleicos de Péptidos/química , Unión Proteica/efectos de los fármacos , Conformación Proteica en Hélice alfa , Proteínas Proto-Oncogénicas c-mdm2/química , Proteína p53 Supresora de Tumor/química
5.
Biochem Soc Trans ; 47(1): 239-249, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30647142

RESUMEN

Replicative DNA polymerases are nano-machines essential to life, which have evolved the ability to copy the genome with high fidelity and high processivity. In contrast with cellular transcriptases and ribosome machines, which evolved by accretion of complexity from a conserved catalytic core, no replicative DNA polymerase is universally conserved. Strikingly, four different families of DNA polymerases have evolved to perform DNA replication in the three domains of life. In Bacteria, the genome is replicated by DNA polymerases belonging to the A- and C-families. In Eukarya, genomic DNA is copied mainly by three distinct replicative DNA polymerases, Polα, Polδ, and Polε, which all belong to the B-family. Matters are more complicated in Archaea, which contain an unusual D-family DNA polymerase (PolD) in addition to PolB, a B-family replicative DNA polymerase that is homologous to the eukaryotic ones. PolD is a heterodimeric DNA polymerase present in all Archaea discovered so far, except Crenarchaea. While PolD is an essential replicative DNA polymerase, it is often underrepresented in the literature when the diversity of DNA polymerases is discussed. Recent structural studies have shown that the structures of both polymerase and proofreading active sites of PolD differ from other structurally characterized DNA polymerases, thereby extending the repertoire of folds known to perform DNA replication. This review aims to provide an updated structural classification of all replicative DNAPs and discuss their evolutionary relationships, both regarding the DNA polymerase and proofreading active sites.


Asunto(s)
Replicación del ADN , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/clasificación , Archaea , Bacterias , Evolución Biológica , Eucariontes , Conformación Proteica
6.
Nat Commun ; 15(1): 8687, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39384768

RESUMEN

The µ-opioid receptor (µOR), a prototypical G protein-coupled receptor (GPCR), is the target of opioid analgesics such as morphine and fentanyl. Due to the severe side effects of current opioid drugs, there is considerable interest in developing novel modulators of µOR function. Most GPCR ligands today are small molecules, however biologics, including antibodies and nanobodies, represent alternative therapeutics with clear advantages such as affinity and target selectivity. Here, we describe the nanobody NbE, which selectively binds to the µOR and acts as an antagonist. We functionally characterize NbE as an extracellular and genetically encoded µOR ligand and uncover the molecular basis for µOR antagonism by determining the cryo-EM structure of the NbE-µOR complex. NbE displays a unique ligand binding mode and achieves µOR selectivity by interactions with the orthosteric pocket and extracellular receptor loops. Based on a ß-hairpin loop formed by NbE that deeply protrudes into the µOR, we design linear and cyclic peptide analogs that recapitulate NbE's antagonism. The work illustrates the potential of nanobodies to uniquely engage with GPCRs and describes lower molecular weight µOR ligands that can serve as a basis for therapeutic developments.


Asunto(s)
Microscopía por Crioelectrón , Receptores Opioides mu , Anticuerpos de Dominio Único , Receptores Opioides mu/metabolismo , Receptores Opioides mu/química , Receptores Opioides mu/antagonistas & inhibidores , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/metabolismo , Anticuerpos de Dominio Único/farmacología , Humanos , Ligandos , Células HEK293 , Animales , Unión Proteica , Sitios de Unión , Modelos Moleculares , Analgésicos Opioides/farmacología , Analgésicos Opioides/química , Analgésicos Opioides/metabolismo , Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo , Péptidos Cíclicos/farmacología
7.
bioRxiv ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38106026

RESUMEN

The µ-opioid receptor (µOR), a prototypical member of the G protein-coupled receptor (GPCR) family, is the molecular target of opioid analgesics such as morphine and fentanyl. Due to the limitations and severe side effects of currently available opioid drugs, there is considerable interest in developing novel modulators of µOR function. Most GPCR ligands today are small molecules, however biologics, including antibodies and nanobodies, are emerging as alternative therapeutics with clear advantages such as affinity and target selectivity. Here, we describe the nanobody NbE, which selectively binds to the µOR and acts as an antagonist. We functionally characterize NbE as an extracellular and genetically encoded µOR ligand and uncover the molecular basis for µOR antagonism by solving the cryo-EM structure of the NbE-µOR complex. NbE displays a unique ligand binding mode and achieves µOR selectivity by interactions with the orthosteric pocket and extracellular receptor loops. Based on a ß-hairpin loop formed by NbE that deeply inserts into the µOR and centers most binding contacts, we design short peptide analogues that retain µOR antagonism. The work illustrates the potential of nanobodies to uniquely engage with GPCRs and describes novel µOR ligands that can serve as a basis for therapeutic developments.

8.
Mol Cell Oncol ; 8(4): 1975473, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34616878

RESUMEN

Accurate chromosome segregation depends on tight regulation of the protease separase, which cleaves the ring-shaped cohesin complex that entraps the two sister chromatids. We recently reported structures of human separase bound to its inhibitors securin or the cyclin-dependent kinase 1 (CDK1)-cyclin B1 (CCNB1)-cyclin-dependent kinases regulatory subunit 1 (CKS1) complex and discovered an array of molecular mechanisms that block cohesin-cleavage.

9.
Nat Commun ; 11(1): 1591, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32221299

RESUMEN

Replicative DNA polymerases (DNAPs) have evolved the ability to copy the genome with high processivity and fidelity. In Eukarya and Archaea, the processivity of replicative DNAPs is greatly enhanced by its binding to the proliferative cell nuclear antigen (PCNA) that encircles the DNA. We determined the cryo-EM structure of the DNA-bound PolD-PCNA complex from Pyrococcus abyssi at 3.77 Å. Using an integrative structural biology approach - combining cryo-EM, X-ray crystallography, protein-protein interaction measurements, and activity assays - we describe the molecular basis for the interaction and cooperativity between a replicative DNAP and PCNA. PolD recruits PCNA via a complex mechanism, which requires two different PIP-boxes. We infer that the second PIP-box, which is shared with the eukaryotic Polα replicative DNAP, plays a dual role in binding either PCNA or primase, and could be a master switch between an initiation and a processive phase during replication.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Antígeno Nuclear de Célula en Proliferación/química , Antígeno Nuclear de Célula en Proliferación/metabolismo , Archaea , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Clonación Molecular , Microscopía por Crioelectrón , Cristalografía por Rayos X , ADN/metabolismo , Proteínas de Unión al ADN/química , ADN Polimerasa Dirigida por ADN/genética , Eucariontes , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Pyrococcus abyssi/genética , Pyrococcus abyssi/metabolismo , Proteínas Recombinantes de Fusión
10.
Nat Commun ; 7: 12227, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27548043

RESUMEN

Archaeal replicative DNA polymerase D (PolD) constitute an atypical class of DNA polymerases made of a proofreading exonuclease subunit (DP1) and a larger polymerase catalytic subunit (DP2), both with unknown structures. We have determined the crystal structures of Pyrococcus abyssi DP1 and DP2 at 2.5 and 2.2 Å resolution, respectively, revealing a catalytic core strikingly different from all other known DNA polymerases (DNAPs). Rather, the PolD DP2 catalytic core has the same 'double-psi ß-barrel' architecture seen in the RNA polymerase (RNAP) superfamily, which includes multi-subunit transcriptases of all domains of life, homodimeric RNA-silencing pathway RNAPs and atypical viral RNAPs. This finding bridges together, in non-viral world, DNA transcription and DNA replication within the same protein superfamily. This study documents further the complex evolutionary history of the DNA replication apparatus in different domains of life and proposes a classification of all extant DNAPs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA