Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Development ; 146(18)2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31488567

RESUMEN

The mammalian cochlea develops from a ventral outgrowth of the otic vesicle in response to Shh signaling. Mouse embryos lacking Shh or its essential signal transduction components display cochlear agenesis; however, a detailed understanding of the transcriptional network mediating this process is unclear. Here, we describe an integrated genomic approach to identify Shh-dependent genes and associated regulatory sequences that promote cochlear duct morphogenesis. A comparative transcriptome analysis of otic vesicles from mouse mutants exhibiting loss (Smoecko ) and gain (Shh-P1) of Shh signaling reveal a set of Shh-responsive genes partitioned into four expression categories in the ventral half of the otic vesicle. This target gene classification scheme provides novel insight into several unanticipated roles for Shh, including priming the cochlear epithelium for subsequent sensory development. We also mapped regions of open chromatin in the inner ear by ATAC-seq that, in combination with Gli2 ChIP-seq, identified inner ear enhancers in the vicinity of Shh-responsive genes. These datasets are useful entry points for deciphering Shh-dependent regulatory mechanisms involved in cochlear duct morphogenesis and establishment of its constituent cell types.


Asunto(s)
Cóclea/embriología , Cóclea/metabolismo , Genoma , Proteínas Hedgehog/metabolismo , Morfogénesis/genética , Animales , Secuencia de Bases , Embrión de Mamíferos/metabolismo , Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica , Ratones Transgénicos , Reproducibilidad de los Resultados
2.
Dev Biol ; 399(1): 177-187, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25592224

RESUMEN

Wnt1 and Wnt3a secreted from the dorsal neural tube were previously shown to regulate a gene expression program in the dorsal otic vesicle that is necessary for vestibular morphogenesis (Riccomagno et al., 2005. Genes Dev. 19, 1612-1623). Unexpectedly, Wnt1(-/-); Wnt3a(-/-) embryos also displayed a pronounced defect in the outgrowth of the ventrally derived cochlear duct. To determine how Wnt signaling in the dorsal otocyst contributes to cochlear development we performed a series of genetic fate mapping experiments using two independent Wnt responsive driver strains (TopCreER and Gbx2(CreER)) that when crossed to inducible responder lines (Rosa(lacZ) or Rosa(zsGreen)) permanently labeled dorsomedial otic progenitors and their derivatives. Tamoxifen time course experiments revealed that most vestibular structures showed some degree of labeling when recombination was induced between E7.75 and E12.5, consistent with continuous Wnt signaling activity in this tissue. Remarkably, a population of Wnt responsive cells in the dorsal otocyst was also found to contribute to the sensory epithelium of the cochlear duct, including auditory hair and support cells. Similar results were observed with both TopCreER and Gbx2(CreER) strains. The ventral displacement of Wnt responsive cells followed a spatiotemporal sequence that initiated in the anterior otic cup at, or immediately prior to, the 17-somite stage (E9) and then spread progressively to the posterior pole of the otic vesicle by the 25-somite stage (E9.5). These lineage-tracing experiments identify the earliest known origin of auditory sensory progenitors within a population of Wnt responsive cells in the dorsomedial otic cup.


Asunto(s)
Cóclea/metabolismo , Oído Interno/metabolismo , Epitelio/metabolismo , Vía de Señalización Wnt/genética , Animales , Linaje de la Célula/genética , Movimiento Celular/genética , Proliferación Celular/genética , Cóclea/citología , Cóclea/embriología , Oído Interno/citología , Oído Interno/embriología , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Epitelio/embriología , Antagonistas de Estrógenos/farmacología , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Hibridación in Situ , Masculino , Ratones Transgénicos , Microscopía Confocal , Morfogénesis/efectos de los fármacos , Morfogénesis/genética , Tamoxifeno/farmacología , Factores de Tiempo
3.
Dev Cell ; 56(10): 1526-1540.e7, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33964205

RESUMEN

In mammals, sound is detected by mechanosensory hair cells that are activated in response to vibrations at frequency-dependent positions along the cochlear duct. We demonstrate that inner ear supporting cells provide a structural framework for transmitting sound energy through the cochlear partition. Humans and mice with mutations in GAS2, encoding a cytoskeletal regulatory protein, exhibit hearing loss due to disorganization and destabilization of microtubule bundles in pillar and Deiters' cells, two types of inner ear supporting cells with unique cytoskeletal specializations. Failure to maintain microtubule bundle integrity reduced supporting cell stiffness, which in turn altered cochlear micromechanics in Gas2 mutants. Vibratory responses to sound were measured in cochleae from live mice, revealing defects in the propagation and amplification of the traveling wave in Gas2 mutants. We propose that the microtubule bundling activity of GAS2 imparts supporting cells with mechanical properties for transmitting sound energy through the cochlea.


Asunto(s)
Cóclea/citología , Citoesqueleto/metabolismo , Audición/fisiología , Proteínas de Microfilamentos/metabolismo , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Secuencia de Bases , Citoesqueleto/ultraestructura , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/ultraestructura , Pérdida Auditiva/metabolismo , Pérdida Auditiva/patología , Pérdida Auditiva/fisiopatología , Humanos , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Microtúbulos/metabolismo , Mutación/genética , Transporte de Proteínas , Sonido , Vibración , Secuenciación del Exoma
4.
Dev Neurosci ; 28(1-2): 49-57, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16508303

RESUMEN

Many cells in the mammalian brain undergo apoptosis as a normal and critical part of development but the signals that regulate the survival and death of neural progenitor cells and the neurons they produce are not well understood. The Notch signaling pathway is involved in multiple decision points during development and has been proposed to regulate the survival and apoptosis of neural progenitor cells in the developing brain; however, previous experiments have not resolved whether Notch activity is pro- or anti-apoptotic. To elucidate the function of Notch signaling in the survival and death of cells in the nervous system, we have produced single and compound Notch conditional mutants in which Notch1 and Notch3 are removed at different times during brain development and in different populations of cells. We show here that a large number of neural progenitor cells, as well as differentiating neurons, undergo apoptosis in the absence of Notch1 and Notch3, suggesting that Notch activity promotes the survival of both progenitors and newly differentiating cells in the developing nervous system. Finally, we show that postmitotic neurons do not require Notch activity indefinitely to regulate their survival since elevated levels of cell death are observed only during embryogenesis in the Notch mutants and are not detected in neonates.


Asunto(s)
Apoptosis/fisiología , Sistema Nervioso Central/embriología , Neuronas/metabolismo , Receptores Notch/genética , Células Madre/metabolismo , Animales , Diferenciación Celular/fisiología , Supervivencia Celular/fisiología , Sistema Nervioso Central/citología , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , Ratones Noqueados , Mitosis/fisiología , Neuronas/citología , Receptor Notch1/genética , Receptor Notch3 , Células Madre/citología
5.
Development ; 132(19): 4247-58, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16120638

RESUMEN

Numerous lines of evidence suggest that Notch signaling plays a pivotal role in controlling the production of neurons from progenitor cells. However, most experiments have relied on gain-of-function approaches because perturbation of Notch signaling results in death prior to the onset of neurogenesis. Here, we examine the requirement for Notch signaling in the development of the striatum through the analysis of different single and compound Notch1 conditional and Notch3 null mutants. We find that normal development of the striatum depends on the presence of appropriate Notch signals in progenitors during a critical window of embryonic development. Early removal of Notch1 prior to neurogenesis alters early-born patch neurons but not late-born matrix neurons in the striatum. We further show that the late-born striatal neurons in these mutants are spared as a result of functional compensation by Notch3. Notably, however, the removal of Notch signaling subsequent to cells leaving the germinal zone has no obvious effect on striatal organization and patterning. These results indicate that Notch signaling is required in neural progenitor cells to control cell fate in the striatum, but is dispensable during subsequent phases of neuronal migration and differentiation.


Asunto(s)
Cuerpo Estriado/embriología , Receptor Notch1/fisiología , Receptores Notch/fisiología , Animales , Tipificación del Cuerpo , Cuerpo Estriado/metabolismo , Ratones , Morfogénesis , Mutación , Neuronas/fisiología , Receptor Notch1/genética , Receptor Notch3 , Receptores Notch/genética , Transducción de Señal , Células Madre/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA