Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(7): 3405-3414, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32005712

RESUMEN

Drug targeting to inflammatory brain pathologies such as stroke and traumatic brain injury remains an elusive goal. Using a mouse model of acute brain inflammation induced by local tumor necrosis factor alpha (TNFα), we found that uptake of intravenously injected antibody to vascular cell adhesion molecule 1 (anti-VCAM) in the inflamed brain is >10-fold greater than antibodies to transferrin receptor-1 and intercellular adhesion molecule 1 (TfR-1 and ICAM-1). Furthermore, uptake of anti-VCAM/liposomes exceeded that of anti-TfR and anti-ICAM counterparts by ∼27- and ∼8-fold, respectively, achieving brain/blood ratio >300-fold higher than that of immunoglobulin G/liposomes. Single-photon emission computed tomography imaging affirmed specific anti-VCAM/liposome targeting to inflamed brain in mice. Intravital microscopy via cranial window and flow cytometry showed that in the inflamed brain anti-VCAM/liposomes bind to endothelium, not to leukocytes. Anti-VCAM/LNP selectively accumulated in the inflamed brain, providing de novo expression of proteins encoded by cargo messenger RNA (mRNA). Anti-VCAM/LNP-mRNA mediated expression of thrombomodulin (a natural endothelial inhibitor of thrombosis, inflammation, and vascular leakage) and alleviated TNFα-induced brain edema. Thus VCAM-directed nanocarriers provide a platform for cerebrovascular targeting to inflamed brain, with the goal of normalizing the integrity of the blood-brain barrier, thus benefiting numerous brain pathologies.


Asunto(s)
Anticuerpos/administración & dosificación , Barrera Hematoencefálica/efectos de los fármacos , Encefalitis/tratamiento farmacológico , Endotelio Vascular/efectos de los fármacos , Nanomedicina/métodos , Animales , Barrera Hematoencefálica/inmunología , Encefalitis/genética , Encefalitis/inmunología , Endotelio Vascular/inmunología , Humanos , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/inmunología , Ratones , Receptores de Transferrina/genética , Receptores de Transferrina/inmunología , Trombomodulina/genética , Trombomodulina/inmunología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/inmunología
2.
Environ Res ; 203: 111890, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34418446

RESUMEN

Environmental stressors, like endocrine disrupting chemicals (EDC), are considered important contributors to the increased rates of neurodevelopmental dysfunctions. Considering the cumulative research on adverse neurodevelopmental effects associated with prenatal exposure to EDC, the purpose of this study was to review the available limited literature about the effects of postnatal exposure to EDC on child neurodevelopment and behaviour. Despite widespread children's exposure to EDC, there are a limited number of epidemiological studies on the association of this exposure with neurodevelopmental disorders, in particular in the postnatal period. The available research suggests that postnatal EDC exposure is related to adverse neurobehavioral outcomes in children; however the underlying mechanisms of action remain unclear. Timing of exposure is a key factor determining potential neurodevelopmental consequences, hence studying the impact of multiple EDC co-exposure in different vulnerable life periods could guide the identification of sensitive subpopulations. Most of the reviewed studies did not take into account sex differences in the EDC effects on children neurodevelopment. We believe that the inclusion of sex in the study design should be considered as the role of EDC on children neurodevelopment are likely sex-specific and should be taken into consideration when determining susceptibility and potential mechanisms of action.


Asunto(s)
Disruptores Endocrinos , Contaminantes Ambientales , Trastornos del Neurodesarrollo , Niño , Disruptores Endocrinos/toxicidad , Exposición a Riesgos Ambientales/estadística & datos numéricos , Contaminantes Ambientales/toxicidad , Femenino , Humanos , Masculino , Trastornos del Neurodesarrollo/inducido químicamente , Trastornos del Neurodesarrollo/epidemiología , Embarazo , Caracteres Sexuales
3.
Curr Microbiol ; 79(9): 261, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35852662

RESUMEN

Plant pathogens, such as fungi, bacteria, and viruses, can cause serious damage to crops and significantly reduce yield and quality. Bacterial diseases of agronomic crops, however, have been little studied. The present study aims to isolate and identify bacteria recovered from symptomatic maize (Zea mays) leaves collected from field samples in the province of Cordoba, Argentina. Bacterial strains were identified using whole-cell matrix-assisted laser-desorption-ionization-time-off light mass spectrometry and 16S rDNA sequencing. Members of the genera Exiguobacterium and Curtobacterium were dominant in the studied vegetal material. Two strains (RC18-1/2 and RC18-3/1) were selected for further studies. The pathogenicity test showed that plants inoculated with Curtobacterium sp. RC18-1/2 exhibited the same symptoms as those previously detected in the field. To our knowledge, this study provides the first evidence about the isolation of a Curtobacterium pathogenic strain in maize. Effective crop disease management will require the use of integrated strategies, such as resistant cultivars and/or biocontrol agents.


Asunto(s)
Actinomycetales , Zea mays , Actinomycetales/genética , Argentina , Bacterias , ADN Ribosómico/genética , Hongos/genética , Plantas , Zea mays/microbiología
4.
Environ Res ; 197: 111062, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33798517

RESUMEN

Bisphenol A (BPA) is one of the most common endocrine disruptors found in the environment and its harmful health effects in humans and wildlife have been extensively reported One of the main aims of this review was to examine the metabolic pathways of BPA and BPA substitutes and the endocrine disrupting properties of their metabolites. According to the available literature, phase I and phase II metabolic reactions play an important role in the detoxification process of bisphenols (BPs), but their metabolism can also lead to the formation of highly reactive metabolites. The second part of this work addresses the associations between exposure to BPA and its analogues with the alterations in miRNAs expression and the effects of single nucleotide polymorphisms (SNPs). Available scientific evidence shows that BPs can dysregulate the expression of several miRNAs, and in turn, these miRNAs could be considered as epigenetic biomarkers to prevent the development of a variety of BP-mediated diseases. Interestingly, genetic polymorphisms are able to modify the relationship of BPA exposure with the risk of adverse health effects, suggesting that interindividual genetic differences modulate the susceptibility to the effects of environmental contaminants.


Asunto(s)
Disruptores Endocrinos , MicroARNs , Compuestos de Bencidrilo/toxicidad , Disruptores Endocrinos/toxicidad , Humanos , Redes y Vías Metabólicas , MicroARNs/genética , Fenoles , Polimorfismo de Nucleótido Simple , Sulfonas
5.
Brain Behav Immun ; 76: 165-181, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30465881

RESUMEN

New neurons are continuously produced by neural stem cells (NSCs) within the adult hippocampus. Numerous diseases, including major depressive disorder and HIV-1 associated neurocognitive disorder, are associated with decreased rates of adult neurogenesis. A hallmark of these conditions is a chronic release of neuroinflammatory mediators by activated resident glia. Recent studies have shown a neuroprotective role on NSCs of cannabinoid receptor activation. Yet, little is known about the effects of GPR55, a candidate cannabinoid receptor, activation on reductions of neurogenesis in response to inflammatory insult. In the present study, we examined NSCs exposed to IL-1ß in vitro to assess inflammation-caused effects on NSC differentiation and the ability of GPR55 agonists to attenuate NSC injury. NSC differentiation and neurogenesis was determined via immunofluorescence and flow cytometric analysis of NSC markers (Nestin, Sox2, DCX, S100ß, ßIII Tubulin, GFAP). GPR55 agonist treatment protected against IL-1ß induced reductions in neurogenesis rates. Moreover, inflammatory cytokine receptor mRNA expression was down regulated by GPR55 activation in a neuroprotective manner. To determine inflammatory responses in vivo, we treated C57BL/6 and GPR55-/- mice with LPS (0.2 mg/kg/day) continuously for 14 days via osmotic mini-pump. Reductions in NSC survival (as determined by BrdU incorporation), immature neurons, and neuroblast formation due to LPS were attenuated by concurrent direct intrahippocampal administration of the GPR55 agonist, O-1602 (4 µg/kg/day). Molecular analysis of the hippocampal region showed a suppressed ability to regulate immune responses by GPR55-/- animals manifesting in a prolonged inflammatory response (IL-1ß, IL-6, TNFα) after chronic, systemic inflammation as compared to C57BL/6 animals. Taken together, these results suggest a neuroprotective role of GPR55 activation on NSCs in vitro and in vivo and that GPR55 provides a novel therapeutic target against negative regulation of hippocampal neurogenesis by inflammatory insult.


Asunto(s)
Hipocampo/metabolismo , Inflamación/metabolismo , Células-Madre Neurales/inmunología , Neurogénesis/fisiología , Receptores de Cannabinoides/metabolismo , Animales , Cannabidiol/análogos & derivados , Cannabidiol/farmacología , Diferenciación Celular/efectos de los fármacos , Proteína Doblecortina , Femenino , Hipocampo/inmunología , Hipocampo/patología , Inmunidad Activa , Inflamación/inmunología , Inflamación/patología , Interleucina-1beta/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células-Madre Neurales/patología , Neuronas/metabolismo , Neuronas/patología , Neuroprotección/efectos de los fármacos , Neuroprotección/inmunología , Receptores de Cannabinoides/genética , Receptores de Cannabinoides/inmunología
6.
J Neuroinflammation ; 15(1): 25, 2018 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-29373982

RESUMEN

BACKGROUND: Secoisolariciresinol diglucoside (SDG), the main lignan in flaxseed, is known for its beneficial effects in inflammation, oxidative stress, heart disease, tumor progression, atherosclerosis, and diabetes. SDG might be an attractive natural compound that protects against neuroinflammation. Yet, there are no comprehensive studies to date investigating the effects of SDG on brain endothelium using relevant in vivo and in vitro models. METHODS: We evaluated the effects of orally administered SDG on neuroinflammatory responses using in vivo imaging of the brain microvasculature during systemic inflammation and aseptic encephalitis. In parallel, the anti-inflammatory actions of SDG on brain endothelium and monocytes were evaluated in vitro blood-brain barrier (BBB) model. Multiple group comparisons were performed by one-way analysis of variance with Dunnet's post hoc tests. RESULTS: We found that SDG diminished leukocyte adhesion to and migration across the BBB in vivo in the setting of aseptic encephalitis (intracerebral TNFα injection) and prevented enhanced BBB permeability during systemic inflammatory response (LPS injection). In vitro SDG pretreatment of primary human brain microvascular endothelial cells (BMVEC) or human monocytes diminished adhesion and migration of monocytes across brain endothelial monolayers in conditions mimicking CNS inflammatory responses. Consistent with our in vivo observations, SDG decreased expression of the adhesion molecule, VCAM1, induced by TNFα, or IL-1ß in BMVEC. SDG diminished expression of the active form of VLA-4 integrin (promoting leukocyte adhesion and migration) and prevented the cytoskeleton changes in primary human monocytes activated by relevant inflammatory stimuli. CONCLUSION: This study indicates that SDG directly inhibits BBB interactions with inflammatory cells and reduces the inflammatory state of leukocytes. Though more work is needed to determine the mechanism by which SDG mediates these effects, the ability of SDG to exert a multi-functional response reducing oxidative stress, inflammation, and BBB permeability makes it an exciting potential therapeutic for neuroinflammatory diseases. SDG can serve as an anti-inflammatory and barrier-protective agent in neuroinflammation.


Asunto(s)
Antiinflamatorios/farmacología , Barrera Hematoencefálica/efectos de los fármacos , Butileno Glicoles/farmacología , Endotelio Vascular/efectos de los fármacos , Glucósidos/farmacología , Mediadores de Inflamación/antagonistas & inhibidores , Microvasos/efectos de los fármacos , Animales , Barrera Hematoencefálica/metabolismo , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Relación Dosis-Respuesta a Droga , Endotelio Vascular/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Masculino , Ratones , Microvasos/metabolismo
7.
Actas Esp Psiquiatr ; 46(2): 51-7, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29616713

RESUMEN

INTRODUCTION: The armed conflict in Colombia is considered one of the most violent in Latin America. Children as a vulnerable population are most affected, increasing their risk of developing mental problems such as anxiety disorder and post-traumatic stress disorder. OBJECTIVES: To determine the prevalence of the most frequent mental problems in the Colombian children affected by armed conflict. METHODOLOGY: A cross-sectional study, using data from the National Mental Health Survey 2015. With children aged 7 to 11 years, in whom the RQC, PCL and DISC-IV-P (3.0.1) were applied. RESULTS: We described information on 100 displaced children between 7 and 11 years old due to armed conflict, being a representative sample at national level. It was found that 98.7% of this population is at school, as well as 17.8% in poverty. Mental illnesses were asked according to their appearance in the last 12 months, these were: anxiety disorder 6.5% (CI 95% 2.7-14.7) in displaced population, compared to 1.8% (CI 95% 1.1-3.1) in non-displaced; High score for post-traumatic stress was 13.2% (CI 95% 3.9-36.4) in displaced persons and 6.6% (CI 95% 4.0-10.7) in nondisplaced persons. CONCLUSIONS: Children affected by armed conflict have greater risk of presenting some mental illnesses such as anxiety disorder and post-traumatic stress, evidencing the situation of vulnerability in which they are.


Asunto(s)
Trastornos de Ansiedad/epidemiología , Conflictos Armados , Trastornos por Estrés Postraumático/epidemiología , Niño , Colombia/epidemiología , Estudios Transversales , Femenino , Encuestas Epidemiológicas , Humanos , Masculino , Salud Mental , Prevalencia
8.
J Neuroinflammation ; 13(1): 254, 2016 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-27677851

RESUMEN

BACKGROUND: Blood-brain barrier (BBB) dysfunction/disruption followed by leukocyte infiltration into the brain causes neuroinflammation and contributes to morbidity in multiple sclerosis, encephalitis, traumatic brain injury, and stroke. The identification of pathways that decreases the inflammatory potential of leukocytes would prevent such injury. Poly(ADP-ribose) polymerase 1 (PARP) controls various genes via its interaction with myriad transcription factors. Selective PARP inhibitors have appeared lately as potent anti-inflammatory tools. Their effects are outside the recognized PARP functions in DNA repair and transcriptional regulation. In this study, we explored the idea that selective inhibition of PARP in leukocytes would diminish their engagement of the brain endothelium. METHODS: Cerebral vascular changes and leukocyte-endothelium interactions were surveyed by intravital videomicroscopy utilizing a novel in vivo model of localized aseptic meningitis when TNFα was introduced intracerebrally in wild-type (PARP+/+) and PARP-deficient (PARP-/-) mice. The effects of selective PARP inhibition on primary human monocytes ability to adhere to or migrate across the BBB were also tested in vitro, employing primary human brain microvascular endothelial cells (BMVEC) as an in vitro model of the BBB. RESULTS: PARP suppression in monocytes diminished their adhesion to and migration across BBB in vitro models and prevented barrier injury. In monocytes, PARP inactivation decreased conformational activation of integrins that plays a key role in their tissue infiltration. Such changes were mediated by suppression of activation of small Rho GTPases and cytoskeletal rearrangements in monocytes. In vitro observations were confirmed in vivo showing diminished leukocyte-endothelial interaction after selective PARP suppression in leukocytes accompanied by BBB protection. PARP knockout animals demonstrated a substantial diminution of inflammatory responses in brain microvasculature and a decrease in BBB permeability. CONCLUSIONS: These results suggest PARP inhibition in leukocytes as a novel approach to BBB protection in the setting of endothelial dysfunction caused by inflammation-induced leukocyte engagement.

9.
Am J Pathol ; 183(5): 1548-1558, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24055259

RESUMEN

Cannabinoid receptor 2 (CB2) is highly expressed in immune cells and stimulation decreases inflammatory responses. We tested the idea that selective CB2 activation in human monocytes suppresses their ability to engage the brain endothelium and migrate across the blood-brain barrier (BBB), preventing consequent injury. Intravital videomicroscopy was used to quantify adhesion of leukocytes to cortical vessels in lipopolysaccharide-induced neuroinflammation, after injection of ex vivo CB2-activated leukocytes into mice; CB2 agonists markedly decreased adhesion of ex vivo labeled cells in vivo. In an in vitro BBB model, CB2 activation in monocytes largely attenuated adhesion to and migration across monolayers of primary human brain microvascular endothelial cells and diminished BBB damage. CB2 stimulation in monocytes down-regulated active forms of integrins, lymphocyte function-associated antigen 1 (LFA-1), and very late antigen 4 (VLA-4). Cells treated with CB2 agonists exhibited increased phosphorylation levels of inhibitory sites of the actin-binding proteins cofilin and VASP, which are upstream regulators of conformational integrin changes. Up-regulated by relevant stimuli, Rac1 and RhoA were suppressed by CB2 agonists in monocytes. CB2 stimulation decreased formation of lamellipodia, which play a key role in monocyte migration. These results indicate that selective CB2 activation in leukocytes decreases key steps in monocyte-BBB engagement, thus suppressing inflammatory leukocyte responses and preventing neuroinflammation.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Endotelio/metabolismo , Leucocitos/metabolismo , Receptor Cannabinoide CB2/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Animales , Adhesión Celular , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/patología , Encefalitis/metabolismo , Encefalitis/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Endotelio/patología , Humanos , Integrina alfa4beta1/química , Integrina alfa4beta1/metabolismo , Integrina beta1/metabolismo , Lipopolisacáridos , Antígeno-1 Asociado a Función de Linfocito/química , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Ratones , Proteínas de Microfilamentos/metabolismo , Microvasos/patología , Monocitos/metabolismo , Monocitos/patología , Fosfoproteínas/metabolismo , Fosforilación , Seudópodos/metabolismo , Receptor Cannabinoide CB2/agonistas , Migración Transendotelial y Transepitelial , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rhoA
10.
Virology ; 589: 109913, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37924728

RESUMEN

Gastrointestinal viruses (GIV) are an important cause of childhood morbidity and mortality, particularly in developing countries. Their epidemiological impact in Venezuela during the COVID-19 pandemic remains unclear. GIV can also be detected in domestic sewage. Ninety-one wastewater samples from urban areas of Caracas collected over 12 months and concentrated by polyethylene-glycol-precipitation, were analyzed by multiplex reverse-transcription-PCR for rotavirus/calicivirus/astrovirus and enterovirus/klassevirus/cosavirus, and monoplex-PCR for adenovirus and Aichi virus. The overall frequency of virus detection was 46.2%, fluctuating over months, and peaking in the rainy season. Adenoviruses circulated throughout the year, especially type F41, and predominated (52.7%) over caliciviruses (29.1%) that peaked in the rainy months, rotaviruses (9.1%), cosaviruses (5.5%), astroviruses and enteroviruses (1.8%). Aichi-virus and klassevirus were absent. Rotavirus G9/G12, and P[4]/P[8]/P[14] predominated. The occurrence of GIV in wastewater reflects transmission within the population of Caracas and the persistence of a potential public health risk that needs to be adequately monitored.


Asunto(s)
Infecciones por Enterovirus , Enterovirus , Gastroenteritis , Picornaviridae , Rotavirus , Humanos , Aguas Residuales , Venezuela/epidemiología , Pandemias , Gastroenteritis/diagnóstico , Antígenos Virales , Adenoviridae , Infecciones por Enterovirus/epidemiología , Heces
11.
EFSA J ; 21(Suppl 1): e211015, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38047134

RESUMEN

Bisphenol A (BPA) is authorised for use as a chemical compound for the production of plastic food contact materials (FCMs) under Regulation (EU) No 10/2011. But according to requirements of the Regulation (EU) No 2018/213, BPA has been banned in the manufacture of polycarbonate drinking cups or feeding bottles intended for infants and young children. Food has been identified as the main source of human exposure to BPA, followed by dermal absorption, air and dust inhalation, revealing ubiquitous and continuous contact with BPA. Considering that BPA is able to enter the food chain through the migration from food packaging into foodstuffs, assessment of dietary exposure is necessary for accurate estimations and identification of potential exposure from food sources. In 2015, EFSA set a temporary tolerable daily intake (TDI) for BPA of 4 µg/kg body weight (bw) per day and concluded that no health concern from BPA exposure for any age group was to be expected. In 2023, EFSA has re-evaluated BPA safety and the new TDI was reduced by a factor of 20,000 resulting in a TDI of 0.2 ng/kg bw per day. In this case, the CEP Panel concluded that there is a health concern from dietary exposure to BPA. Amongst others, the BfR identified several points of criticism which, in the opinion of the BfR, call into question the risk assessment carried out by EFSA. The BfR derived a TDI of 200 ng/kg bw per day and suggests taking this into account for risk assessment. In the proposed EU-FORA programme, the fellow had the opportunity to gain experience in the exposure assessment and then integrate the data together with the BfR hazard assessment to perform a comprehensive risk assessment. As second objective of the work programme, the fellow was in charge of performing a toxicokinetic analysis in an attempt to correlate external exposure with urinary BPA levels.

12.
Sci Total Environ ; 873: 162333, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36813201

RESUMEN

Exposure to metal(loid)s during critical developmental windows could result in permanent damage to the target organ system, increasing susceptibility to disease later in life. In view of the fact that metals(loid)s have been shown to work as obesogens, the aim of the present case-control study was to evaluate the modification effect of exposure to metal(loid)s on the association between SNPs in genes involved in metal(loid) detoxification and excess body weight among children. A total of 134 Spanish children aged 6-12 years old were included (88 controls and 46 cases). Seven SNPs (GSTP1 rs1695 and rs1138272; GCLM rs3789453, ATP7B rs1061472, rs732774 and rs1801243; and ABCC2 rs1885301) were genotyped on GSA microchips, and ten metal(loid)s were analysed in urine samples through Inductively coupled plasma mass spectrometry (ICP-MS). Multivariable logistic regressions were conducted to assess the genetic and metal exposures' main association and interaction effects. GSTP1 rs1695 and ATP7B rs1061472 showed significant effects on excess weight increase in those children carrying two copies of the risk G allele and being highly exposed to chromium (ORa = 5.38, p = 0.042, p interaction = 0.028 for rs1695; and ORa = 4.20, p = 0.035, p interaction = 0.012 for rs1061472) and lead (ORa = 7.18, p = 0.027, p interaction = 0.031 for rs1695, and ORa = 3.42, p = 0.062, p interaction = 0.010 for rs1061472). Conversely, GCLM rs3789453 and ATP7B rs1801243 appeared to play a protective role against excess weight in those exposed to copper (ORa = 0.20, p = 0.025, p interaction = 0.074 for rs3789453) and lead (ORa = 0.22, p = 0.092, p interaction = 0.089 for rs1801243). Our findings provide the first proof that interaction effects could exist between genetic variants within GSH and metal transporting systems and exposure to metal(loid)s, on excess body weight among Spanish children.


Asunto(s)
Metales Pesados , Metales , Humanos , Niño , Cobre , Genotipo , Polimorfismo de Nucleótido Simple , Peso Corporal , Metales Pesados/orina
13.
Internet Interv ; 34: 100682, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37867615

RESUMEN

Background: The prevalence of professional burnout increased among healthcare workers during the coronavirus 2019 (COVID-19) pandemic, with negative effects on their mental health. Consequently, research interest in methods to decrease the prevalence of burnout and reduce the effects of burnout on healthcare workers has increased. Objective: This study was designed to evaluate the effects of Internet-based, psychosocial, and early medical interventions on professional burnout among healthcare workers. Methodology: This systematic review and meta-analysis involved 8004 articles identified from four databases: Cochrane, Web of Science, PubMed/Medline, and clinical trials. Results: Four articles were included in the systematic review, of which two could be meta-analyzed. The pooled effect of the group of interventions compared to control conditions was not statistically significant. Discussion: Evaluating therapeutic effectiveness requires more clinical trials that allow its evaluation. Although we did not find improvements in the three intervention categories, the methodological heterogeneity in each intervention and the need for a standardized intervention guide for managing and decreasing professional burnout, subject to the evaluation of its impact, are highlighted.

14.
Intern Emerg Med ; 18(2): 429-437, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36792855

RESUMEN

In a high proportion of patients, infection by COVID-19 progresses to acute respiratory distress syndrome (ARDS), requiring invasive mechanical ventilation (IMV) and admission to an intensive care unit (ICU). Other devices, such as a high-flow nasal cannula (HFNC), have been alternatives to IMV in settings with limited resources. This study evaluates whether HFNC exposure time prior to IMV is associated with mortality. This observational, analytical study was conducted on a historical cohort of adults with ARDS due to SARS-CoV-2 who were exposed to HFNC and subsequently underwent IMV. Univariate and multivariate logistic regression was used to analyze the impact of HFNC exposure time on mortality, controlling for multiple potential confounders. Of 325 patients with ARDS, 41 received treatment with HFNC for more than 48 h before IMV initiation. These patients had a higher mortality rate (43.9% vs. 27.1%, p: 0.027) than those using HFNC < 48 h. Univariate analysis evidenced an association between mortality and HFNC ≥ 48 h (OR 2.16. 95% CI 1.087-4.287. p: 0.028). Such an association persisted in the multivariable analysis (OR 2.21. 95% CI 1.013-4.808. p: 0.046) after controlling for age, sex, comorbidities, basal severity of infection, and complications. This study also identified a significant increase in mortality after 36 h in HFNC (46.3%, p: 0.003). In patients with ARDS due to COVID-19, HFNC exposure ≥ 48 h prior to IMV is a factor associated with mortality after controlling multiple confounders. Physiological mechanisms for such an association are need to be defined.


Asunto(s)
COVID-19 , Ventilación no Invasiva , Síndrome de Dificultad Respiratoria , Insuficiencia Respiratoria , Adulto , Humanos , SARS-CoV-2 , Cánula/efectos adversos , COVID-19/complicaciones , COVID-19/terapia , Respiración Artificial , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/terapia , Ventilación no Invasiva/efectos adversos , Factores de Riesgo , Terapia por Inhalación de Oxígeno , Insuficiencia Respiratoria/terapia
15.
Diagn Microbiol Infect Dis ; 107(3): 116056, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37683387

RESUMEN

Human adenoviruses (HAdV) of species F are commonly involved in pediatric acute gastroenteritis (AGE). The real impact on Venezuelan health is unknown. To investigate the prevalence and molecular diversity of HAdV in Venezuela, 630 fecal samples collected from children with AGE in 3 cities, from 2001 to 2013, were tested by PCR. Species F and types F40/41 were identified by REA. HAdV was detected in 123 cases (19.5%), most from outpatient females under 24 months old. A progressive and substantial increase in the detection rate was observed over time, significantly higher in rotavirus vaccinated than unvaccinated children (28.4% vs. 9.5%, P = 0.00019). Phylogenetic analysis of 28 randomly selected genomes showed high similarity among HAdV-F40/41 and those worldwide. HAdV-F of type 41 prevailed (79.8%) and clustered into 2 intratypic major clades. The significant involvement of HAdV-F41 in AGE suggests the importance of actively monitoring viral agents other than rotavirus, especially after vaccine introduction.


Asunto(s)
Adenovirus Humanos , Gastroenteritis , Vacunas contra Rotavirus , Rotavirus , Femenino , Humanos , Lactante , Adenovirus Humanos/genética , Heces , Gastroenteritis/epidemiología , Filogenia , Rotavirus/genética , Venezuela/epidemiología , Masculino
16.
ACS Nano ; 17(14): 13121-13136, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37432926

RESUMEN

Ex vivo-loaded white blood cells (WBC) can transfer cargo to pathological foci in the central nervous system (CNS). Here we tested affinity ligand driven in vivo loading of WBC in order to bypass the need for ex vivo WBC manipulation. We used a mouse model of acute brain inflammation caused by local injection of tumor necrosis factor alpha (TNF-α). We intravenously injected nanoparticles targeted to intercellular adhesion molecule 1 (anti-ICAM/NP). We found that (A) at 2 h, >20% of anti-ICAM/NP were localized to the lungs; (B) of the anti-ICAM/NP in the lungs >90% were associated with leukocytes; (C) at 6 and 22 h, anti-ICAM/NP pulmonary uptake decreased; (D) anti-ICAM/NP uptake in brain increased up to 5-fold in this time interval, concomitantly with migration of WBCs into the injured brain. Intravital microscopy confirmed transport of anti-ICAM/NP beyond the blood-brain barrier and flow cytometry demonstrated complete association of NP with WBC in the brain (98%). Dexamethasone-loaded anti-ICAM/liposomes abrogated brain edema in this model and promoted anti-inflammatory M2 polarization of macrophages in the brain. In vivo targeted loading of WBC in the intravascular pool may provide advantages of coopting WBC predisposed to natural rapid mobilization from the lungs to the brain, connected directly via conduit vessels.


Asunto(s)
Sistemas de Liberación de Medicamentos , Pulmón , Ratones , Animales , Pulmón/metabolismo , Encéfalo/metabolismo , Liposomas/metabolismo , Leucocitos/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo
17.
Sci Total Environ ; 852: 158219, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36007653

RESUMEN

Current evidence highlights the importance of the genetic component in obesity and neurodevelopmental disorders (attention-deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD) and intellectual disability (ID)), given that these diseases have reported an elevated heritability. Additionally, environmental stressors, such as endocrine disrupting chemicals (EDCs) have been classified as obesogens, neuroendocrine disruptors, and microbiota disrupting chemicals (MDCs). For this reason, the importance of this work lies in examining two possible biological mechanistic pathways linking obesity and neurodevelopmental/behavioural disorders: EDCs - gene and EDCs - microbiota interactions. First, we summarise the shared mechanisms of action of EDCs and the common genetic profile in the bidirectional link between obesity and neurodevelopment. In relation to interaction models, evidence from the reviewed studies reveals significant interactions between pesticides/heavy metals and gene polymorphisms of detoxifying and neurotransmission systems and metal homeostasis on cognitive development, ASD and ADHD symptomatology. Nonetheless, available literature about obesity is quite limited. Importantly, EDCs have been found to induce gut microbiota changes through gut-brain-microbiota axis conferring susceptibility to obesity and neurodevelopmental disorders. In view of the lack of studies assessing the impact of EDCs - gene interactions and EDCs - mediated dysbiosis jointly in obesity and neurodevelopment, we support considering genetics, EDCs exposure, and microbiota as interactive factors rather than individual contributors to the risk for developing obesity and neurodevelopmental disabilities at the same time.


Asunto(s)
Trastorno del Espectro Autista , Disruptores Endocrinos , Microbioma Gastrointestinal , Metales Pesados , Plaguicidas , Humanos , Disruptores Endocrinos/toxicidad , Trastorno del Espectro Autista/inducido químicamente , Obesidad/inducido químicamente , Exposición a Riesgos Ambientales
18.
Chemosphere ; 293: 133421, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34958792

RESUMEN

A growing body of evidence supports that more than 900 single nucleotide polymorphisms (SNPs) and exposure to endocrine disrupting chemicals, such as bisphenols and parabens, are important contributors to the development of obesity. The aim of this study was to evaluate the way in which fat mass and obesity-associated gene (FTO) rs9939609 and leptin receptor (LEPR) rs9436303 variants contribute to variability in body mass index (BMI) according to estimated dietary exposure of bisphenols and parabens. This cross-sectional study included 101 Spanish participants (16-24 years). SNP genotyping assays were performed through quantitative PCRs (qPCRs) using Taqman® probes. Dietary exposure to bisphenols and parabens was calculated from food frequency questionnaire and chemical determination in food samples by ultra-high performance liquid chromatography-tandem mass spectrometry system. Linear regression models were conducted to address the association of genetic variants and BMI according to levels of bisphenols/parabens exposure. Risk G allele of LEPR rs9436303 was significantly positively associated with BMI (exp (ß) = 1.20, 95% CI: 1.04-1.38, p = 0.011). In participants highly exposed to bisphenols, the LEPR rs9436303 G allele was related to a significant increased BMI (exp (ß) = 1.27, 95% CI: 1.03-1.57, p = 0.024). A more relevant trend was observed with high exposure to parabens (exp (ß) = 1.33, 95% CI: 1.08-1.63, p = 0.009). We provide the first evidence that interaction between LEPR polymorphism and dietary intake of bisphenols and parabens may be responsible for an increased BMI, suggesting a potential effect in obesity. Moreover, we proposed LEPR rs9436303 as a genetic marker of susceptibility to excess weight induced by exposure.


Asunto(s)
Exposición Dietética , Parabenos , Adolescente , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Índice de Masa Corporal , Estudios Transversales , Exposición Dietética/análisis , Humanos , Parabenos/análisis , Parabenos/toxicidad , Polimorfismo de Nucleótido Simple , Adulto Joven
19.
J Minim Invasive Gynecol ; 18(2): 238-45, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21354071

RESUMEN

This pilot study was performed from March 2008 through February 2010 to demonstrate that pregnancy can be achieved in a uterine allograft in the sheep model with the guidance of assisted reproductive technology. Uterine allotransplantation was performed in 12 sexually mature African sheep (Sudanese and Ethiopian). All animals underwent uterine transplantation via a minilaparotomy incision using a Mobius retractor device. A control group of pregnant Romney Marsh sheep with nontransplanted uteri were used to compare fetal development, uterine and placental histologic findings, and blood samples of progeny of the uterine transplant recipient sheep. Fetal size was obtained from ultrasound measurements during the early (crown-rump length) and late (biparietal diameter and abdominal circumference) gestational periods. The primary end point variables included preoperative and postoperative management, embryo transfer protocol, intraoperative assessments, and physiologic cardiopulmonary changes in the lamb during the first 5 hours of life. Four months after the initial uterine transplantation, 5 of 12 uterine allografts were considered candidates for the embryo transfer procedure. Fresh and frozen blastocyst donors were transferred accordingly to the remaining 5 uterine allografts via a minilaparotomy incision. Three of these resulted in pregnancies. One was an ectopic gestation, 1 sheep carried the pregnancy to 105 days, and 1 delivered a fully developed lamb from the transplanted uterus that was delivered via cesarean section. Neonatal lamb blood gas values and chemistry, gross organ examination, and ventilation and respiratory compliance studies yielded results normal for gestational age. This first reported case demonstrates that pregnancy can be carried in an allotransplanted uterus, with the end result a successful delivery.


Asunto(s)
Resultado del Embarazo/veterinaria , Útero/trasplante , Animales , Transferencia de Embrión , Femenino , Laparotomía , Proyectos Piloto , Embarazo , Ovinos , Resultado del Tratamiento
20.
Cancers (Basel) ; 14(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35008363

RESUMEN

Here, the role of non-invasive biomarkers in liquid biopsy was evaluated, mainly in exosomes and mitochondrial DNA (mtDNA) as promising, novel, and stable biomarkers for renal cell carcinoma (RCC). A total of 140 fractions (named from B to F) obtained by ultracentrifugations of whole blood samples from 28 individuals (13 patients and 15 controls) were included. Nanoparticle Tracking Analysis (NTA) was conducted to characterized exosomal fraction. Subsequently, an analysis of digital PCR (dPCR) using the QuantStudio™ 3D Digital PCR platform was performed and the quantification of mtDNA copy number by QuantStudioTM 12K Flex Real-Time PCR System (qPCR) was developed. Moreover, Next Generation Sequencing (NGS) analyses were included using MiSeq system (Illumina, San Diego, CA, USA). An F fraction, which contains all exosome data and all mitochondrial markers, was identified in dPCR and qPCR with statistically significant power (adjusted p values ≤ 0.03) when comparing cases and controls. Moreover, present analysis in mtDNA showed a relevant significance in RCC aggressiveness. To sum up, this is the first time a relation between exosomal mtDNA markers and clinical management of RCC is analyzed. We suggest a promising strategy for future liquid biopsy RCC analysis, although more analysis should be performed prior to application in routine clinical practice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA