Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Prod Rep ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888170

RESUMEN

Covering: 1987 to 2023Naturally existing glycoproteins through post-translational protein glycosylation are highly heterogeneous, which not only impedes the structure-function studies, but also hinders the development of their potential medical usage. Chemical synthesis represents one of the most powerful tools to provide the structurally well-defined glycoforms. Being the key step of glycoprotein synthesis, glycosylation usually takes place at serine, threonine, and asparagine residues, leading to the predominant formation of the O- and N-glycans, respectively. However, other amino acid residues containing oxygen, nitrogen, sulfur, and nucleophilic carbon atoms have also been found to be glycosylated. These diverse glycoprotein linkages, occurring from microorganisms to plants and animals, play also pivotal biological roles, such as in cell-cell recognition and communication. The availability of these homogenous rare glycopeptides and glycoproteins can help decipher the glyco-code for developing therapeutic agents. This review highlights the chemical approaches for assembly of the functional glycopeptides and glycoproteins bearing these "rare" carbohydrate-amino acid linkages between saccharide and canonical amino acid residues and their derivatives.

2.
Anim Biotechnol ; 34(9): 5028-5036, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37409468

RESUMEN

The objectives of the current study were to identify polymorphism in the prolactin receptor (PRLR) gene among three Egyptian goat breeds (Zaraibi, Damascus, and Barki) and to investigate the association between PRLR genotype, parity, season of kidding, and litter size factors with milk yield and reproductive traits of Zaraibi goats. One hundred and ninety blood samples were collected for DNA extraction, with 110 from Zaraibi, 40 from Barki, and 40 from Damascus breeds. Three genotypes, CC, CT and TT, for the prolactin receptor gene were identified in the 190 DNA samples using restriction fragment length polymorphism and were confirmed by direct sequencing technique. Milk yield during suckling and lactation periods in addition to age at first conception, gestation length, and litter size were determined in 110 Zaraibi goats. The Zaraibi goats recorded the highest heterozygosity (0.495) and the effective number of alleles (1.972). The g.62130C > T SNP showed a significant association (p < 0.01) with suckling, lactation, and total milk yield of Zaraibi goats with the highest values recorded at the third parity. Age at the first conception and gestation length traits were significantly influenced by the kidding season (p < 0.05) with younger age in autumn and shorter length in spring seasons. Milk yield during the suckling period was significantly (p < 0.01) higher in the case of triplets' litter size. The current study showed that litter size and parity played an important role in the amount of Zaraibi goats' milk yield. The g.62130C > T SNP of the PRLR gene may be a useful marker for assisted selection programs to improve goat milk yield during suckling and lactation periods with the heterozygous genotype CT recording the highest values.


Asunto(s)
Prolactina , Receptores de Prolactina , Embarazo , Femenino , Animales , Receptores de Prolactina/genética , Alelos , Prolactina/genética , Cabras/genética , Egipto , Leche , ADN
3.
Angew Chem Int Ed Engl ; 62(1): e202211985, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36173931

RESUMEN

Heparan sulfate (HS) has multifaceted biological activities. To date, no libraries of HS oligosaccharides bearing systematically varied sulfation structures are available owing to the challenges in synthesizing a large number of HS oligosaccharides. To overcome the obstacles and expedite the synthesis, a divergent approach was designed, where 64 HS tetrasaccharides covering all possible structures of 2-O-, 6-O- and N-sulfation with the glucosamine-glucuronic acid-glucosamine-iduronic acid backbone were successfully produced from a single strategically protected tetrasaccharide intermediate. This extensive library helped identify the structural requirements for HS sequences to have strong fibroblast growth factor-2 binding but a weak affinity for platelet factor-4. Such a strategy to separate out these two interactions could lead to new HS-based potential therapeutics without the dangerous adverse effect of heparin-induced thrombocytopenia.


Asunto(s)
Heparitina Sulfato , Oligosacáridos , Oligosacáridos/química , Heparitina Sulfato/química , Unión Proteica , Ácido Glucurónico/metabolismo , Glucosamina
4.
Angew Chem Int Ed Engl ; 62(47): e202309744, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37781858

RESUMEN

Sialyl Lewisa (sLea ), also known as cancer antigen 19-9 (CA19-9), is a tumor-associated carbohydrate antigen. The overexpression of sLea on the surface of a variety of cancer cells makes it an attractive target for anticancer immunotherapy. However, sLea -based anticancer vaccines have been under-explored. To develop a new vaccine, efficient stereoselective synthesis of sLea with an amine-bearing linker was achieved, which was subsequently conjugated with a powerful carrier bacteriophage, Qß. Mouse immunization with the Qß-sLea conjugate generated strong and long-lasting anti-sLea IgG antibody responses, which were superior to those induced by the corresponding conjugate of sLea with the benchmark carrier keyhole limpet hemocyanin. Antibodies elicited by Qß-sLea were highly selective toward the sLea structure, could bind strongly with sLea -expressing cancer cells and human pancreatic cancer tissues, and kill tumor cells through complement-mediated cytotoxicity. Furthermore, vaccination with Qß-sLea significantly reduced tumor development in a metastatic cancer model in mice, demonstrating tumor protection for the first time by a sLea -based vaccine, thus highlighting the significant potential of sLea as a promising cancer antigen.


Asunto(s)
Bacteriófagos , Vacunas contra el Cáncer , Neoplasias , Ratones , Humanos , Animales , Antígeno CA-19-9 , Vacunas contra el Cáncer/química , Inmunoglobulina G/metabolismo
5.
Acta Oncol ; 61(6): 705-713, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35435129

RESUMEN

PURPOSE: There is increasing interest in using stereotactic body radiation therapy (SBRT) in areas of oligoprogressive metastatic disease (OPD). Our main objective was to investigate the impact of SBRT on overall survival (OS) and the incidence of systemic therapy treatment switches in this population. METHODS: A retrospective institutional review of patients treated with SBRT for OPD was performed. Patients were included if they received SBRT for 1-3 discrete progressing metastases, using a dose of at least 5 Gy per fraction. The study aimed to calculate progression-free survival (PFS), overall survival (OS), local control (LC), and incidence of treatment switch (TS). PFS and OS were calculated using the Kaplan-Meier methodology, while LC and TS were determined using cumulative incidence. RESULTS: Eighty-one patients with a total of 118 lesions were treated with SBRT from July 2014 to November 2020. The Median SBRT dose was 40 (18-60) Gy in 5 (2-8) fractions. Patients had primarily kidney, lung, or breast cancer. Most patients were treated with a tyrosine kinase inhibitor (TKI) (30.9%) or chemotherapy (29.6%) before OPD. The median follow-up post-SBRT was 14 months. Median OS and PFS were 25.1 (95% CI 11.2-39.1) months and 7.8 (95% CI 4.6-10.9) months, respectively. The cumulative incidence of local progression of treated lesions was 5% at 1 year and 7.3% at 2 years. Sixty patients progressed after SBRT and 17 underwent additional SBRT. Thirty-eight patients (47%) changed systemic therapy following SBRT; the cumulative incidence of TS was 28.5% at 6 months, 37.4% at 1 year, and 43.9% at 2 years. CONCLUSIONS: SBRT effectively controls locally progressing lesions but distant progression still occurs frequently. A sizeable number of patients can be salvaged by further SBRT or have minimally progressing diseases that may not warrant an immediate initiation/switch in systemic therapy. Further prospective studies are needed to validate this benefit.


Asunto(s)
Neoplasias Renales , Radiocirugia , Humanos , Neoplasias Renales/patología , Supervivencia sin Progresión , Estudios Prospectivos , Radiocirugia/métodos , Estudios Retrospectivos , Resultado del Tratamiento
6.
Bioorg Med Chem ; 74: 117066, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36283250

RESUMEN

Pertussis is a highly contagious respiratory disease caused by the Gram-negative bacterial pathogen, Bordetella pertussis. Despite high global vaccination rates, pertussis is resurging worldwide. Here we discuss the development of current pertussis vaccines and their limitations, which highlight the need for new vaccines that can protect against the disease and prevent development of the carrier state, thereby reducing transmission. The lipo-oligosaccharide of Bp is an attractive antigen for vaccine development as the anti-glycan antibodies could have bactericidal activities. The structure of the lipo-oligosaccharide has been determined and its immunological properties analyzed. Strategies enabling the expression, isolation, and bioconjugation have been presented. However, obtaining the saccharide on a large scale with high purity remains one of the main obstacles. Chemical synthesis provides a complementary approach to accessing the carbohydrate epitopes in a pure and structurally well-defined form. The first total synthesis of the non-reducing end pertussis pentasaccharide is discussed. The conjugate of the synthetic glycan with a powerful immunogenic carrier, bacteriophage Qß, results in high levels and long-lasting anti-glycan IgG antibodies, paving the way for the development of a new generation of anti-pertussis vaccines with high bactericidal activities and biocompatibilities.


Asunto(s)
Anticuerpos Antibacterianos , Tos Ferina , Humanos , Vacuna contra la Tos Ferina , Bordetella pertussis , Tos Ferina/prevención & control , Oligosacáridos/química
7.
Anim Biotechnol ; : 1-8, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36409677

RESUMEN

This study was conducted to genetically and environmentally characterize prolificacy (litter size and weight at birth; LSB and LWB and litter size and weight at weaning; LSW and LWW, respectively), milk yield at the 7th (MY7), 15th (MY15), 30th (MY30), 60th (MY60), 90th (MY90) day of lactation and monthly milk yield (MMY) and milk composition traits in Egyptian Zaraibi goats. A total of 443 and 421 records produced by 121 Zaraibi lactating goats were used to assess prolificacy and milk production traits, respectively. The milk composition traits were measured using 371 milk samples obtained at random from 53 goats. The fourth parity showed the highest values for LWB, LWW, and MMY (3.62, 18.15, and 28.99 kg, respectively). Milk composition traits revealed an inverse tendency, decreasing until the second month and then increasing until the seventh month. The heritability estimates ranged from 0.07 to 0.13, from 0.04 to 0.39, and from 0.07 to 0.33 for prolificacy, milk yield, and milk composition traits, respectively. Negatively high genetic correlations between MMY and all milk composition traits were found. MMY had the highest estimate of heritability (0.39 ± 0.07), this means that the genetic improvement of this trait could be achieved through direct selection.

8.
Angew Chem Int Ed Engl ; 61(48): e202209730, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36199167

RESUMEN

Heparan sulfate (HS) plays important roles in many biological processes. The inherent complexity of naturally existing HS has severely hindered the thorough understanding of their structure-activity relationship. To facilitate biological studies, a new strategy has been developed to synthesize a HS-like pseudo-hexasaccharide library, where HS disaccharides were linked in a "head-to-tail" fashion from the reducing end of a disaccharide module to the non-reducing end of a neighboring module. Combinatorial syntheses of 27 HS-like pseudo-hexasaccharides were achieved. This new class of compounds bound with fibroblast growth factor 2 (FGF-2) with similar structure-activity trends as HS oligosaccharides bearing native glycosyl linkages. The ease of synthesis and the ability to mirror natural HS activity trends suggest that the new head-to-tail linked pseudo-oligosaccharides could be an exciting tool to facilitate the understanding of HS biology.


Asunto(s)
Disacáridos , Heparitina Sulfato , Heparitina Sulfato/química , Disacáridos/química , Oligosacáridos/química , Relación Estructura-Actividad , Unión Proteica
9.
AJR Am J Roentgenol ; 217(2): 314-325, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-32966115

RESUMEN

BACKGROUND. The use of synthetic 2D mammography (SM) with digital breast tomosynthesis (DBT) in place of standard 2D digital mammography (DM) may reduce radiation dose without sacrificing accuracy. OBJECTIVE. The purpose of our study was to compare the diagnostic accuracy of SM, DM, SM with DBT, and DM with DBT for breast cancer detection. EVIDENCE ACQUISITION. A search of MEDLINE, Embase, and Cochrane databases was performed for relevant articles published up to September 11, 2019. Studies included compared the diagnostic accuracy of SM versus DM and SM plus DBT versus DM plus DBT for breast cancer detection. Relevant study data metrics and risk of bias were assessed. A bivariate random-effects meta-analysis and meta-regression were performed to assess diagnostic accuracy (PROSPERO CRD42020150737). EVIDENCE SYNTHESIS. Thirteen studies reporting on 201,304 patients (7252 patients with breast cancer) were included. The SM group (six studies: 20,728 patients, 724 with breast cancer) had 75% sensitivity (95% CI, 67-82%) and 92% specificity (95% CI, 85-96%). The DM group (nine studies: 52,082 patients, 2249 patients with breast cancer) had 73% sensitivity (95% CI, 65-80%) and 88% specificity (95% CI, 77-94%). The SM plus DBT group (10 studies, 64,224 patients, 2149 with breast cancer) had 85% sensitivity (95% CI, 80-89%) and 93% specificity (95% CI, 86-96%). The DM plus DBT group (nine studies, 64,270 patients, 2130 with breast cancer) had 84% sensitivity (95% CI, 80-88%) and 91% specificity (95% CI, 83-95%). Meta-regression models did not reveal significant differences in accuracy between the SM and DM groups (p = .25-.77). CONCLUSION. SM and SM plus DBT showed comparable diagnostic accuracy to DM and DM plus DBT, respectively. CLINICAL IMPACT. The findings support the implementation of SM in place of standard DM for mammographic imaging of the breasts. This may lead to an overall reduction in radiation exposure.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Mamografía/métodos , Mama/diagnóstico por imagen , Femenino , Humanos
10.
Org Biomol Chem ; 19(11): 2448-2455, 2021 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-33645601

RESUMEN

MUC1 glycopeptides are attractive antigens for anti-cancer vaccine development. One potential drawback in using the native MUC1 glycopeptide for vaccine design is the instability of the O-glycosyl linkage between the glycan and the peptide backbone to glycosidase. To overcome this challenge, a MUC1 glycopeptide mimic has been synthesized with the galactose-galactosamine disaccharide linked with threonine (Thomsen-Friedenreich or Tf antigen) through an unnatural ß-glycosyl bond. The resulting MUC1-ß-Tf had a much-enhanced stability toward a glycosidase capable of cleaving the glycan from the corresponding MUC1 glycopeptide with the natural α-Tf linkage. The MUC1-ß-Tf was subsequently conjugated with a powerful carrier bacteriophage Qß. The conjugate induced high levels of IgG antibodies in clinically relevant human MUC1 transgenic mice, which cross-recognized not only the natural MUC1-α-Tf glycopeptide but also MUC1 expressing tumor cells, supporting the notion that a simple switch of the stereochemistry of the glycan/peptide linkage can be a strategy for anti-cancer vaccine epitope design for glycopeptides.


Asunto(s)
Antígenos de Carbohidratos Asociados a Tumores/química , Vacunas contra el Cáncer/química , Glicopéptidos/química , Mucina-1/química , Animales , Vacunas contra el Cáncer/inmunología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Disacáridos/química , Diseño de Fármacos , Galactosamina/química , Galactosa/química , Humanos , Inmunoglobulina G/química , Inmunoglobulina G/farmacología , Ratones , Ratones Transgénicos , Mucina-1/inmunología
11.
Angew Chem Int Ed Engl ; 60(45): 24179-24188, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34469031

RESUMEN

Ganglioside GD2 is an attractive tumor-associated carbohydrate antigen for anti-cancer vaccine development. However, its low immunogenicity and the significant side effects observed with anti-GD2 antibodies present significant obstacles for vaccines. To overcome these, a new GD2 derivative bearing an N-acetamide (NHAc) at its non-reducing end neuraminic acid (9NHAc-GD2) has been designed to mimic the 9-O-acetylated-GD2 (9OAc-GD2), a GD2 based antigen with a restricted expression on tumor cells. 9NHAc-GD2 was synthesized efficiently via a chemoenzymatic method and subsequently conjugated with a powerful carrier bacteriophage Qß. Mouse immunization with the Qß-9NHAc-GD2 conjugate elicited strong and long-lasting IgG antibodies, which were highly selective toward 9NHAc-GD2 with little cross-recognition of GD2. Immunization of canines with Qß-9NHAc-GD2 showed the construct was immunogenic in canines with little adverse effects, paving the way for future clinical translation to humans.


Asunto(s)
Vacunas contra el Cáncer/química , Gangliósidos/síntesis química , Vacunas Conjugadas/química , Acetamidas/química , Acetamidas/inmunología , Acetilación , Animales , Vacunas contra el Cáncer/inmunología , Conformación de Carbohidratos , Gangliósidos/química , Gangliósidos/inmunología , Hidrólisis , Ratones , Ácidos Neuramínicos/química , Ácidos Neuramínicos/inmunología , Desarrollo de Vacunas , Vacunas Conjugadas/inmunología
12.
J Appl Clin Med Phys ; 21(6): 26-32, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32374922

RESUMEN

INTRODUCTION: The tracheostomy site and adjacent skin is at risk for recurrence in head/neck squamous cell cancer patients. The tracheostomy tube is an in situ device located directly over the tracheostomy site and may have clinical implications on the radiation dose delivered to the peristomal region. This study aimed to investigate this effect by comparing the prescribed treatment planning dose with the actual dose in vivo to the peristomal clinical target region. A retrospective, dosimetric study was performed with approval of the institutional research ethics board. METHODS: Fifteen patients who had received high-dose radiotherapy to the tracheostomy region with in vivo dose measurements were included. The radiation dose at the skin surface underneath the tracheostomy device was measured using an optically stimulated luminescent dosimeter (OSLD) and was compared with the prescribed dose from the radiation planning system. The effect of the tracheostomy flange and/or soft tissue equivalent bolus on the peristomal dose was calculated. RESULTS AND DISCUSSION: Patients with tracheostomy equipment in situ were found to have a 3.7% difference between their prescribed and actual dose. With a tissue equivalent bolus there was a 2.0% difference between predicted and actual. The mean prescribed single fraction dose (mean = 191.8 cGy, SD = 40.18) and OSLD measured dose (mean = 194.02 cGy, SD = 44.3) were found to have no significant difference. However, with the flange excluded from the planning simulation (density = air) target skin dose deviated from predicted by an average of 55.3% (range = 12.4-72.9, SD = 22.5) and volume coverage was not achieved. CONCLUSION: In summary, the tracheostomy flange acts like bolus with a twofold increase in the skin surface dose. Changes in the peristomal apparatus from simulation to treatment needs to be considered to ensure that the simulated dose and coverage is achieved.


Asunto(s)
Neoplasias de Cabeza y Cuello , Planificación de la Radioterapia Asistida por Computador , Traqueostomía , Femenino , Neoplasias de Cabeza y Cuello/radioterapia , Humanos , Masculino , Recurrencia Local de Neoplasia , Dosificación Radioterapéutica , Estudios Retrospectivos
13.
Trop Anim Health Prod ; 52(3): 1065-1071, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31664649

RESUMEN

The objectives of this study were to identify polymorphisms in the lactoferrin gene among three Egyptian goat breeds (Barki, Zaraibi, and Damascus) and to investigate the effect of LF genotype, parity, and lactation stage on milk composition traits of Zaraibi goats. One hundred and thirty-two blood samples were collected for DNA extraction, with 53 from Zaraibi, 40 from Damascus, and 39 from Barki breeds. Fat, protein, total solids, solids-not-fat, and lactose percentages were determined in Zaraibi goat milk using an automatic milk analyzer. Two genotypes, GG and GA, in the lactoferrin gene were identified using single-strand conformation polymorphism and were confirmed by direct sequencing technique. The Zaraibi breed recorded the highest heterozygosity (0.272) and effective number of alleles (1.369), while the Damascus breed recorded the lowest values. The G/A SNP showed a significant association with protein, solids-not-fat, and total solid content of Zaraibi goat milk. Protein, solids-not-fat, and total solid content in our study were significantly higher at early and late parities. Lactose percentage decreased significantly from early to late parity. Fat, protein, solids-not-fat, and total solid content were significantly higher at early and late stages of lactation, and our results encourage the utilization of Zaraibi goat milk in cheese and butter processing at these stages. Moreover, the G/A SNP of the LF gene may be a useful marker for assisted selection programs to improve goat milk composition.


Asunto(s)
Cabras/genética , Lactoferrina/genética , Leche/química , Animales , Egipto , Femenino , Lactancia/genética , Leche/metabolismo , Polimorfismo Conformacional Retorcido-Simple , Embarazo
14.
J Am Chem Soc ; 140(48): 16596-16609, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30398345

RESUMEN

Human mucin-1 (MUC1) is a highly attractive antigen for the development of anticancer vaccines. However, in human clinical trials of multiple MUC1 based vaccines, despite the generation of anti-MUC1 antibodies, the antibodies often failed to exhibit much binding to tumor presumably due to the challenges in inducing protective immune responses in the immunotolerant environment. To design effective MUC1 based vaccines functioning in immunotolerant hosts, vaccine constructs were first synthesized by covalently linking the powerful bacteriophage Qß carrier with MUC1 glycopeptides containing 20-22 amino acid residues covering one full length of the tandem repeat region of MUC1. However, IgG antibodies elicited by these first generation constructs in tolerant human MUC1 transgenic (Tg) mice did not bind tumor cells strongly. To overcome this, a peptide array has been synthesized. By profiling binding selectivities of antibodies, the long MUC1 glycopeptide was found to contain immunodominant but nonprotective epitopes. Critical insights were obtained into the identity of the key protective epitope. Redesign of the vaccine focusing on the protective epitope led to a new Qß-MUC1 construct, which was capable of inducing higher levels of anti-MUC1 IgG antibodies in MUC1.Tg mice to react strongly with and kill a wide range of tumor cells compared to the construct containing the gold standard protein carrier, i.e., keyhole limpet hemocyanin. Vaccination with this new Qß-MUC1 conjugate led to significant protection of MUC1.Tg mice in both metastatic and solid tumor models. The antibodies exhibited remarkable selectivities toward human breast cancer tissues, suggesting its high translational potential.


Asunto(s)
Neoplasias de la Mama/terapia , Vacunas contra el Cáncer/uso terapéutico , Epítopos/inmunología , Mucina-1/inmunología , Allolevivirus/química , Secuencia de Aminoácidos , Animales , Anticuerpos/inmunología , Anticuerpos/metabolismo , Neoplasias de la Mama/inmunología , Vacunas contra el Cáncer/inmunología , Femenino , Gastrópodos/química , Hemocianinas/síntesis química , Hemocianinas/química , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Mucina-1/química , Mucina-1/genética , Metástasis de la Neoplasia/inmunología , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/química , Fragmentos de Péptidos/inmunología , Proteínas Virales/síntesis química , Proteínas Virales/química
15.
Small ; 14(3)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29134771

RESUMEN

The accumulation and formation of ß-amyloid (Aß) plaques in the brain are distinctive pathological hallmarks of Alzheimer's disease (AD). Designing nanoparticle (NP) contrast agents capable of binding with Aß highly selectively can potentially facilitate early detection of AD. However, a significant obstacle is the blood brain barrier (BBB), which can preclude the entrance of NPs into the brain for Aß binding. In this work, bovine serum albumin (BSA) coated NPs are decorated with sialic acid (NP-BSAx -Sia) to overcome the challenges in Aß imaging in vivo. The NP-BSAx -Sia is biocompatible with high magnetic relaxivities, suggesting that they are suitable contrast agents for magnetic resonance imaging (MRI). The NP-BSAx -Sia binds with Aß in a sialic acid dependent manner with high selectivities toward Aß deposited on brains and cross the BBB in an in vitro model. The abilities of these NPs to detect Aß in vivo in human AD transgenic mice by MRI are evaluated without the need to coinject mannitol to increase BBB permeability. T2 *-weighted MRI shows that Aß plaques in mouse brains can be detected as aided by NP-BSAx -Sia, which is confirmed by histological analysis. Thus, NP-BSAx -Sia is a promising new tool for noninvasive in vivo detection of Aß plaques.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides/análisis , Medios de Contraste/química , Nanopartículas de Magnetita/química , Ácido N-Acetilneuramínico/química , Albúmina Sérica Bovina/química , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Barrera Hematoencefálica/diagnóstico por imagen , Barrera Hematoencefálica/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Medios de Contraste/metabolismo , Modelos Animales de Enfermedad , Humanos , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Transgénicos
16.
European J Org Chem ; 2018(9): 1075-1096, 2018 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29805297

RESUMEN

Due to the wide presence of carbohydrates in nature and their crucial roles in numerous important biological processes, oligosaccharides have attracted a lot of attention in synthetic organic chemistry community. Many innovative synthetic methods have been developed for oligosaccharide synthesis, among which the pre-activation based glycosylation is particularly noteworthy. Traditionally, glycosylation reactions are carried out when the glycosyl donor and the acceptor are both present when the promoter is added. In comparison, the pre-activation based glycosylation is unique, where the glycosyl donor is activated by the promoter in the absence of the acceptor. Upon complete donor activation, the acceptor is added to the reaction mixture enabling glycosylation. The key step in any oligosaccharide synthesis is the stereoselective formation of the glycosidic bond. As donor activation and acceptor glycosylation are temporally separated, pre-activation based glycosylation can bestow unique stereochemical control. This review systematically discusses factors impacting the stereochemical outcome of a pre-activation based glycosylation reaction including substituents on the glycosyl donor, reaction solvent, and additives. Applications of pre-activation based stereoselective glycosylation in assembly of complex oligosaccharides are also discussed.

17.
Beilstein J Org Chem ; 13: 2094-2114, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29062430

RESUMEN

Most glycosylation reactions are performed by mixing the glycosyl donor and acceptor together followed by the addition of a promoter. While many oligosaccharides have been synthesized successfully using this premixed strategy, extensive protective group manipulation and aglycon adjustment often need to be performed on oligosaccharide intermediates, which lower the overall synthetic efficiency. Preactivation-based glycosylation refers to strategies where the glycosyl donor is activated by a promoter in the absence of an acceptor. The subsequent acceptor addition then leads to the formation of the glycoside product. As donor activation and glycosylation are carried out in two distinct steps, unique chemoselectivities can be obtained. Successful glycosylation can be performed independent of anomeric reactivities of the building blocks. In addition, one-pot protocols have been developed that have enabled multiple-step glycosylations in the same reaction flask without the need for intermediate purification. Complex glycans containing both 1,2-cis and 1,2-trans linkages, branched oligosaccharides, uronic acids, sialic acids, modifications such as sulfate esters and deoxy glycosides have been successfully synthesized. The preactivation-based chemoselective glycosylation is a powerful strategy for oligosaccharide assembly complementing the more traditional premixed method.

18.
Chembiochem ; 17(2): 174-80, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26538065

RESUMEN

The development of carbohydrate-based antitumor vaccines is an attractive approach towards tumor prevention and treatment. Herein, we focused on the ganglioside GM2 tumor-associated carbohydrate antigen (TACA), which is overexpressed in a wide range of tumor cells. GM2 was synthesized chemically and conjugated with a virus-like particle derived from bacteriophage Qß. Although the copper-catalyzed azide-alkyne cycloaddition reaction efficiently introduced 237 copies of GM2 per Qß, this construct failed to induce significant amounts of anti-GM2 antibodies compared to the Qß control. In contrast, GM2 immobilized on Qß through a thiourea linker elicited high titers of IgG antibodies that recognized GM2-positive tumor cells and effectively induced cell lysis through complement-mediated cytotoxicity. Thus, bacteriophage Qß is a suitable platform to boost antibody responses towards GM2, a representative member of an important class of TACA: the ganglioside.


Asunto(s)
Allolevivirus/química , Anticuerpos Monoclonales , Gangliósido G(M2)/química , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/uso terapéutico , Vacunas contra el Cáncer/síntesis química , Vacunas contra el Cáncer/química , Secuencia de Carbohidratos , Línea Celular Tumoral , Ensayo de Inmunoadsorción Enzimática , Gangliósido G(M2)/síntesis química , Gangliósido G(M2)/uso terapéutico , Ratones , Datos de Secuencia Molecular , Neoplasias/tratamiento farmacológico
19.
J Org Chem ; 81(23): 12052-12059, 2016 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-27809505

RESUMEN

Among many hurdles in synthesizing proteoglycan glycopeptides, one challenge is the incorporation of aspartic acid in the peptide backbone and acid sensitive O-sulfated glycan chains. To overcome this, a new strategy was developed utilizing homoserine as an aspartic acid precursor. The conversion of homoserine to aspartic acid in the glycopeptide was successfully accomplished by late stage oxidation using (2,2,6,6-tetramethyl-piperidin-1-yl)oxyl (TEMPO) and bis(acetoxy)iodobenzene (BAIB). This is the first time that a glycopeptide containing aspartic acid and an O-sulfated glycan was synthesized.


Asunto(s)
Ácido Aspártico/química , Glicopéptidos/síntesis química , Homoserina/química , Polisacáridos/química , Proteoglicanos/química , Secuencia de Carbohidratos , Espectroscopía de Resonancia Magnética con Carbono-13 , Glicopéptidos/química , Espectrometría de Masas , Espectroscopía de Protones por Resonancia Magnética , Técnicas de Síntesis en Fase Sólida , Sulfatos/química
20.
Curr Oncol ; 31(1): 558-565, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38275832

RESUMEN

We present the case of a 75-year-old female with simultaneous EGFR-mutated stage IV lung cancer and advanced BRCA2-mutated ovarian cancer, treated with a unique regimen. In this case report, the patient was treated with alternating months of osimertinib and olaparib to control her lung and ovarian cancers, respectively. When both diseases showed progression, the patient underwent a trial of concurrent therapy with both drugs, yet this was discontinued due to patient-reported adverse side effects. Combination targeted drug therapy may be required to treat complex diagnoses such as dual malignancies. However, combination drug therapy consisting of osimertinib and olaparib has not previously been explored. This case report represents the first to demonstrate osimertinib and olaparib combination therapy as a unique treatment regimen for concurrent lung and ovarian cancers. These two drugs can either be given in an alternating way or given together, short-term, with a higher but tolerable toxicity profile.


Asunto(s)
Acrilamidas , Compuestos de Anilina , Carcinoma de Pulmón de Células no Pequeñas , Indoles , Neoplasias Pulmonares , Neoplasias Ováricas , Ftalazinas , Piperazinas , Pirimidinas , Femenino , Humanos , Anciano , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Carcinoma Epitelial de Ovario
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA