Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cancer Cell ; 7(6): 521-32, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15950902

RESUMEN

CUTL1, also known as CDP, Cut, or Cux-1, is a homeodomain transcriptional regulator known to be involved in development and cell cycle progression. Here we report that CUTL1 activity is associated with increased migration and invasiveness in numerous tumor cell lines, both in vitro and in vivo. Furthermore, we identify CUTL1 as a transcriptional target of transforming growth factor beta and a mediator of its promigratory effects. CUTL1 activates a transcriptional program regulating genes involved in cell motility, invasion, and extracellular matrix composition. CUTL1 expression is significantly increased in high-grade carcinomas and is inversely correlated with survival in breast cancer. This suggests that CUTL1 plays a central role in coordinating a gene expression program associated with cell motility and tumor progression.


Asunto(s)
Movimiento Celular/fisiología , Invasividad Neoplásica/patología , Neoplasias/patología , Proteínas Nucleares/fisiología , Proteínas Represoras/fisiología , Factor de Crecimiento Transformador beta/fisiología , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Supervivencia sin Enfermedad , Regulación hacia Abajo/genética , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio , Humanos , Ratones , Ratones Desnudos , Células 3T3 NIH , Invasividad Neoplásica/genética , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , ARN Bicatenario/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal/fisiología , Proteína Smad4 , Transactivadores/metabolismo , Factores de Transcripción , Transcripción Genética/efectos de los fármacos , Transfección , Factor de Crecimiento Transformador beta/farmacología , Regulación hacia Arriba/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
2.
Nat Commun ; 4: 2020, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23799510

RESUMEN

Genetic ablation of endothelial focal adhesion kinase (FAK) can inhibit pathological angiogenesis, suggesting that loss of endothelial FAK is sufficient to reduce neovascularization. Here we show that reduced stromal FAK expression in FAK-heterozygous mice unexpectedly enhances both B16F0 and CMT19T tumour growth and angiogenesis. We further demonstrate that cell proliferation and microvessel sprouting, but not migration, are increased in serum-stimulated FAK-heterozygous endothelial cells. FAK-heterozygous endothelial cells display an imbalance in FAK phosphorylation at pY397 and pY861 without changes in Pyk2 or Erk1/2 activity. By contrast, serum-stimulated phosphorylation of Akt is enhanced in FAK-heterozygous endothelial cells and these cells are more sensitive to Akt inhibition. Additionally, low doses of a pharmacological FAK inhibitor, although too low to affect FAK autophosphorylation in vitro, can enhance angiogenesis ex vivo and tumour growth in vivo. Our results highlight a potential novel role for FAK as a nonlinear, dose-dependent regulator of angiogenesis where heterozygous levels of FAK enhance angiogenesis.


Asunto(s)
Quinasa 1 de Adhesión Focal/metabolismo , Neoplasias/irrigación sanguínea , Neoplasias/enzimología , Neovascularización Patológica/enzimología , Animales , Proliferación Celular , Separación Celular , Supervivencia Celular , Células Endoteliales/patología , Heterocigoto , Inmunohistoquímica , Técnicas In Vitro , Ratones , Proteínas Mutantes/metabolismo , Neoplasias/patología , Neovascularización Patológica/patología , Paxillin/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Tejido Subcutáneo/patología , Talina/metabolismo , Carga Tumoral , Vinculina/metabolismo
3.
Int J Biochem Cell Biol ; 41(3): 521-30, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18762270

RESUMEN

Angiogenesis, the formation of new blood vessels from pre-existing vasculature, is prevalent both during normal mammalian development and in certain pathological conditions such as tumor growth. It is stimulated and controlled by a complex network of intracellular signaling mechanisms, many of which are initiated by trans-membrane receptors transducing signals received from other cells and from the extracellular environment. Of these, cytokine signaling is recognized as one of the primary drivers of angiogenesis, but it has become increasingly evident that signaling mechanisms generated as a result of cell adhesion interactions are also crucially important. In addition, cell adhesion pathways are also intimately tied to cytokine signaling often making it difficult to dissect out the relative contribution of each to a particular angiogenic step. Many of these same signaling mechanisms are often manipulated by tumors to stimulate aberrant angiogenesis and enhance their blood supply. As a consequence, there is a great deal of interest in trying to understand the full complement of intracellular signaling pathways in angiogenesis as well as their interplay and timing during the process. Ultimately, understanding the complex network of signaling pathways that function during angiogenesis will provide important avenues for future therapeutic development.


Asunto(s)
Endotelio Vascular/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Integrinas/metabolismo , Neovascularización Fisiológica , Animales , Adhesión Celular , Citocinas/metabolismo , Matriz Extracelular , Quinasas MAP Reguladas por Señal Extracelular/genética , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Humanos , Integrinas/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neovascularización Patológica , Transducción de Señal
4.
Cell Cycle ; 6(23): 2902-5, 2007 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17993782

RESUMEN

Much progress has been made in understanding the myriad of intracellular signaling pathways responsible for control of cell physiology. Signalling downstream of receptor tyrosine kinases (RTKs) is probably the most studied signalling mechanism to date and many of the molecular components and corresponding interactions involved have been delineated. Importantly, deregulation of RTK signalling has been implicated in the formation and maintenance of many human tumours. Two of the pivotal molecular components in RTK signalling, Ras and phosphoinositide 3-kinase (PI 3-kinase), have been shown to bind to each other, leading to the activation of PI 3-kinase. However, in addition to this Ras-PI 3-kinase interaction, first described over a decade ago, several other molecular interactions have more recently been described that appear to mediate the same signal. This has brought into question the physiological relevance of the Ras-PI 3-kinase interaction during RTK signalling. Through disruption of the interaction in a mouse model, we have now confirmed that the interaction is highly functional in vivo both during mammalian development and during Ras-induced tumorigenesis. Many questions still remain: in this Perspective, we explore the remaining uncertainties surrounding the role of this signalling mechanism, as well as the future directions that will likely shed further light on its role within cells.


Asunto(s)
Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas ras/metabolismo , Animales , Humanos , Linfangiogénesis , Neoplasias/etiología , Transducción de Señal , Proteínas ras/genética
5.
Cell ; 129(5): 957-68, 2007 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-17540175

RESUMEN

Ras proteins signal through direct interaction with a number of effector enzymes, including type I phosphoinositide (PI) 3-kinases. Although the ability of Ras to control PI 3-kinase has been well established in manipulated cell culture models, evidence for a role of the interaction of endogenous Ras with PI 3-kinase in normal and malignant cell growth in vivo has been lacking. Here we generate mice with mutations in the Pi3kca gene encoding the catalytic p110alpha isoform that block its interaction with Ras. Cells from these mice show proliferative defects and selective disruption of signaling from growth factors to PI 3-kinase. The mice display defective development of the lymphatic vasculature, resulting in perinatal appearance of chylous ascites. Most importantly, they are highly resistant to endogenous Ras oncogene-induced tumorigenesis. The interaction of Ras with p110alpha is thus required in vivo for certain normal growth factor signaling and for Ras-driven tumor formation.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas ras/metabolismo , Secuencia de Aminoácidos , Animales , Bovinos , Proliferación Celular , Fosfatidilinositol 3-Quinasa Clase I , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Fibroblastos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Anomalías Linfáticas/genética , Anomalías Linfáticas/metabolismo , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Fosfatidilinositol 3-Quinasas/genética , Mutación Puntual , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Alineación de Secuencia , Transducción de Señal
6.
J Biol Chem ; 279(12): 11471-9, 2004 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-14684745

RESUMEN

Endophilin A1 is an SH3 domain-containing protein functioning in membrane trafficking on the endocytic pathway. We have identified the E3 ubiquitin ligase itch/AIP4 as an endophilin A1-binding partner. Itch belongs to the Nedd4/Rsp5p family of proteins and contains an N-terminal C2 domain, four WW domains and a catalytic HECT domain. Unlike other Nedd4/Rsp5p family members, itch possesses a short proline-rich domain that mediates its binding to the SH3 domain of endophilin A1. Itch ubiquitinates endophilin A1 and the SH3/proline-rich domain interaction facilitates this activity. Interestingly, itch co-localizes with markers of the endosomal system in a C2 domain-dependent manner and upon EGF stimulation, endophilin A1 translocates to an EGF-positive endosomal compartment where it colocalizes with itch. Moreover, EGF treatment of cells stimulates endophilin A1 ubiquitination. We have thus identified endophilin A1 as a substrate for the endosome-localized ubiquitin ligase itch. This interaction may be involved in ubiquitin-mediated sorting mechanisms operating at the level of endosomes.


Asunto(s)
Aciltransferasas/metabolismo , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Proteínas Represoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Animales , Secuencia de Bases , Células COS , Cartilla de ADN , Técnica del Anticuerpo Fluorescente , Fracciones Subcelulares/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA