Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurochem ; 155(2): 191-206, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32157699

RESUMEN

Mitochondrial dysfunction has a recognised role in the progression of Alzheimer's disease (AD) pathophysiology. Cerebral perfusion becomes increasingly inefficient throughout ageing, leading to unbalanced mitochondrial dynamics. This effect is exaggerated by amyloid ß (Aß) and phosphorylated tau, two hallmark proteins of AD pathology. A neuroprotective role for the adipose-derived hormone, leptin, has been demonstrated in neuronal cells. However, its effects with relation to mitochondrial function in AD remain largely unknown. To address this question, we have used both a glucose-serum-deprived (CGSD) model of ischaemic stroke in SH-SY5Y cells and a Aß1-42 -treatment model of AD in differentiated hippocampal cells. Using a combination of 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) and MitoRed staining techniques, we show that leptin prevents depolarisation of the mitochondrial membrane and excessive mitochondrial fragmentation induced by both CGSD and Aß1-42 . Thereafter, we used ELISAs and a number of activity assays to reveal the biochemical underpinnings of these processes. Specifically, leptin was seen to inhibit up-regulation of the mitochondrial fission protein Fis1 and down-regulation of the mitochondrial fusion protein, Mfn2. Furthermore, leptin was seen to up-regulate the expression and activity of the antioxidant enzyme, monoamine oxidase B. Herein we provide the first demonstration that leptin is sufficient to protect against aberrant mitochondrial dynamics and resulting loss of function induced by both CGSD and Aß1-42 . We conclude that the established neuroprotective actions of leptin may be facilitated through regulation of mitochondrial dynamics.


Asunto(s)
Leptina/farmacología , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Dinámicas Mitocondriales/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Péptidos beta-Amiloides/farmacología , Animales , Línea Celular , GTP Fosfohidrolasas/antagonistas & inhibidores , GTP Fosfohidrolasas/biosíntesis , Glucosa/deficiencia , Hipocampo/citología , Hipocampo/patología , Humanos , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Ratones , Mitocondrias/efectos de los fármacos , Membranas Mitocondriales/efectos de los fármacos , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/biosíntesis , Monoaminooxidasa/metabolismo , Fragmentos de Péptidos/farmacología , Especies Reactivas de Oxígeno/metabolismo
2.
Drug Dev Res ; 81(2): 215-231, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31471933

RESUMEN

Based on the monoamine oxidase (MAO) inhibition properties of aminoheterocycles with a carbonitrile group we have carried out a systematic exploration to discover new classes of carbonitriles endowed with dual MAO and AChE inhibitory activities, and Aß anti-aggregating properties. Eighty-three nitrile-containing compounds, 13 of which are new, were synthesized and evaluated. in vitro screening revealed that 31, a new compound, presented the best lead for trifunctional inhibition against MAO A (0.34 µM), MAO B (0.26 µM), and AChE (52 µM), while 32 exhibited a lead for selective MAO A (0.12 µM) inhibition coupled to AChE (48 µM) inhibition. Computational analysis revealed that the malononitrile group can find an advantageous position with the aromatic cleft and FAD of MAO A or MAO B. However, the total binding energy can be handicapped by an internal penalty caused by twisting of the ligand molecule and subsequent disruption of the conjugation (32 in MAO B compared to the conjugated 31). Conjugation is also important for AChE as well as the hydrophilic character of malononitrile that allows this group to be in close contact with the aqueous environment as seen for 83. Although the effect of 31 and 32 against Aß1-42 , was very weak, the effect of 63 and 65, and of the new compound 75, indicated that these compounds were able to disaggregate Aß1-42 fibrils. The most effective was 63, a (phenylhydrazinylidene)propanedinitrile derivative that also inhibited MAO A (1.65 µM), making it a potential lead for Alzheimer's disease application.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/efectos de los fármacos , Nitrilos/síntesis química , Enfermedad de Alzheimer/tratamiento farmacológico , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Biología Computacional/métodos , Simulación por Computador , Humanos , Modelos Moleculares , Estructura Molecular , Inhibidores de la Monoaminooxidasa/síntesis química , Inhibidores de la Monoaminooxidasa/química , Inhibidores de la Monoaminooxidasa/farmacología , Nitrilos/química , Nitrilos/farmacología , Relación Estructura-Actividad
3.
Molecules ; 25(24)2020 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-33322203

RESUMEN

The irreversible inhibitors of monoamine oxidases (MAO) slow neurotransmitter metabolism in depression and neurodegenerative diseases. After oxidation by MAO, hydrazines, cyclopropylamines and propargylamines form a covalent adduct with the flavin cofactor. To assist the design of new compounds to combat neurodegeneration, we have updated the kinetic parameters defining the interaction of these established drugs with human MAO-A and MAO-B and analyzed the required features. The Ki values for binding to MAO-A and molecular models show that selectivity is determined by the initial reversible binding. Common to all the irreversible inhibitor classes, the non-covalent 3D-chemical interactions depend on a H-bond donor and hydrophobic-aromatic features within 5.7 angstroms apart and an ionizable amine. Increasing hydrophobic interactions with the aromatic cage through aryl halogenation is important for stabilizing ligands in the binding site for transformation. Good and poor inactivators were investigated using visible spectroscopy and molecular dynamics. The initial binding, close and correctly oriented to the FAD, is important for the oxidation, specifically at the carbon adjacent to the propargyl group. The molecular dynamics study also provides evidence that retention of the allenyl imine product oriented towards FADH- influences the formation of the covalent adduct essential for effective inactivation of MAO.


Asunto(s)
Inhibidores de la Monoaminooxidasa/química , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/química , Sitios de Unión , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Cinética , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Oxidación-Reducción , Unión Proteica , Relación Estructura-Actividad , Especificidad por Sustrato , Factores de Tiempo
4.
J Neural Transm (Vienna) ; 125(11): 1659-1683, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29516165

RESUMEN

Monoamine oxidases (MAOs) catalyse the oxidation of neurotransmitter amines and a wide variety of primary, secondary and tertiary amine xenobiotics, including therapeutic drugs. While inhibition of MAO activity in the periphery removes protection from biogenic amines and so is undesirable, inhibition in the brain gives vital antidepressant and behavioural advantages that make MAO a major pharmaceutical target for inhibitor design. In neurodegenerative diseases, MAO inhibitors can help to maintain neurotransmitter levels, making it a common feature in novel multi-target combinations designed to combat Alzheimer's disease, albeit not yet proven clinically. Vital information for inhibitor design comes from an understanding of the structure, mechanism, and kinetics of the catalyst. This review will summarize the kinetic behaviour of MAO A and B and the kinetic evaluation of reversible inhibitors that transiently decrease catalysis. Kinetic parameters and crystal structures have enabled computational approaches to ligand discovery and validation of hits by docking. Kinetics and a wide variety of substrates and inhibitors along with theoretical modelling have also contributed to proposed schemes for the still debated chemical mechanism of amine oxidation. However, most of the marketed MAO drugs are long-lasting irreversible inactivators. The mechanism of irreversible inhibition by hydrazine, cyclopropylamine, and propargylamine drugs will be discussed. The article finishes with some examples of the propargylamine moiety in multi-target ligand design to combat neurodegeneration.


Asunto(s)
Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/metabolismo , Diseño de Fármacos , Humanos
5.
Bioorg Med Chem ; 25(3): 1143-1152, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28082069

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder associated with an excessive accumulation of amyloid-beta peptide (Aß). Based on the multifactorial nature of AD, preparation of multi-target-directed ligands presents a viable option to address more pathological events at one time. A novel class of asymmetrical disubstituted indolyl thioureas have been designed and synthesized to interact with monoamine oxidase (MAO) and/or amyloid-binding alcohol dehydrogenase (ABAD). The design combines the features of known MAO inhibitors scaffolds (e.g. rasagiline or ladostigil) and a frentizole moiety with potential to interact with ABAD. Evaluation against MAO identified several compounds that inhibited in the low to moderate micromolar range. The most promising compound (19) inhibited human MAO-A and MAO-B with IC50 values of 6.34µM and 0.30µM, respectively. ABAD activity evaluation did not show any highly potent compound, but the compound series allowed identification of structural features to assist the future development of ABAD inhibitors. Finally, several of the compounds were found to be potent inhibitors of horseradish peroxidase (HRP), preventing the use of the Amplex™ Red assay to detect hydrogen peroxide produced by MAO, highlighting the need for serious precautions when using an enzyme-coupled assay.


Asunto(s)
3-Hidroxiacil-CoA Deshidrogenasas/antagonistas & inhibidores , Enfermedad de Alzheimer/tratamiento farmacológico , Benzotiazoles/farmacología , Inhibidores Enzimáticos/farmacología , Monoaminooxidasa/metabolismo , Compuestos de Fenilurea/farmacología , Tiourea/farmacología , 3-Hidroxiacil-CoA Deshidrogenasas/metabolismo , Enfermedad de Alzheimer/metabolismo , Benzotiazoles/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Estructura Molecular , Compuestos de Fenilurea/química , Relación Estructura-Actividad , Tiourea/síntesis química , Tiourea/química
6.
Molecules ; 22(7)2017 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-28714881

RESUMEN

The actions of many drugs involve enzyme inhibition. This is exemplified by the inhibitors of monoamine oxidases (MAO) and the cholinsterases (ChE) that have been used for several pharmacological purposes. This review describes key principles and approaches for the reliable determination of enzyme activities and inhibition as well as some of the methods that are in current use for such studies with these two enzymes. Their applicability and potential pitfalls arising from their inappropriate use are discussed. Since inhibitor potency is frequently assessed in terms of the quantity necessary to give 50% inhibition (the IC50 value), the relationships between this and the mode of inhibition is also considered, in terms of the misleading information that it may provide. Incorporation of more than one functionality into the same molecule to give a multi-target-directed ligands (MTDLs) requires careful assessment to ensure that the specific target effects are not significantly altered and that the kinetic behavior remains as favourable with the MTDL as it does with the individual components. Such factors will be considered in terms of recently developed MTDLs that combine MAO and ChE inhibitory functions.


Asunto(s)
Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Descubrimiento de Drogas , Inhibidores de la Monoaminooxidasa/química , Inhibidores de la Monoaminooxidasa/farmacología , Animales , Inhibidores de la Colinesterasa/uso terapéutico , Colinesterasas/química , Colinesterasas/metabolismo , Simulación por Computador , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos , Activación Enzimática/efectos de los fármacos , Humanos , Monoaminooxidasa/química , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neurotransmisores/antagonistas & inhibidores , Neurotransmisores/metabolismo , Relación Estructura-Actividad
7.
Angew Chem Int Ed Engl ; 56(41): 12765-12769, 2017 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-28861918

RESUMEN

The therapy of complex neurodegenerative diseases requires the development of multitarget-directed drugs (MTDs). Novel indole derivatives with inhibitory activity towards acetyl/butyrylcholinesterases and monoamine oxidases A/B as well as the histamine H3 receptor (H3R) were obtained by optimization of the neuroprotectant ASS234 by incorporating generally accepted H3R pharmacophore motifs. These small-molecule hits demonstrated balanced activities at the targets, mostly in the nanomolar concentration range. Additional in vitro studies showed antioxidative neuroprotective effects as well as the ability to penetrate the blood-brain barrier. With this promising in vitro profile, contilisant (at 1 mg kg-1 i.p.) also significantly improved lipopolysaccharide-induced cognitive deficits.


Asunto(s)
Antioxidantes/química , Inhibidores de la Colinesterasa/química , Antagonistas de los Receptores Histamínicos H3/química , Indoles/química , Inhibidores de la Monoaminooxidasa/química , Fármacos Neuroprotectores/química , Animales , Antioxidantes/síntesis química , Antioxidantes/farmacocinética , Antioxidantes/uso terapéutico , Barrera Hematoencefálica/metabolismo , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/farmacocinética , Inhibidores de la Colinesterasa/uso terapéutico , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Diseño de Fármacos , Antagonistas de los Receptores Histamínicos H3/síntesis química , Antagonistas de los Receptores Histamínicos H3/farmacocinética , Antagonistas de los Receptores Histamínicos H3/uso terapéutico , Humanos , Indoles/síntesis química , Indoles/farmacocinética , Indoles/uso terapéutico , Ligandos , Ratones , Inhibidores de la Monoaminooxidasa/síntesis química , Inhibidores de la Monoaminooxidasa/farmacocinética , Inhibidores de la Monoaminooxidasa/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/farmacocinética , Fármacos Neuroprotectores/uso terapéutico , Piperidinas/síntesis química , Piperidinas/química , Piperidinas/farmacocinética , Piperidinas/uso terapéutico
8.
Biochim Biophys Acta ; 1844(6): 1104-10, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24642166

RESUMEN

Monoamine oxidases (MAO) and cholinesterases are validated targets in the design of drugs for the treatment of Alzheimer's disease. The multi-target compound N-((5-(3-(1-benzylpiperidin-4-yl)propoxy)-1-methyl-1H-indol-2-yl)methyl)-N-methylprop-2-yn-1-amine (ASS234), bearing the MAO-inhibiting propargyl group attached to a donepezil moiety that inhibits cholinesterases, retained activity against human acetyl- and butyryl-cholinesterases. The inhibition of MAO A and MAO B by ASS234 was characterized and compared to other known MAO inhibitors. ASS234 was almost as effective as clorgyline (kinact/KI=3×10(6) min(-1)M(-1)) and was shown by structural studies to form the same N5 covalent adduct with the FAD cofactor.


Asunto(s)
Indoles/química , Inhibidores de la Monoaminooxidasa/química , Monoaminooxidasa/química , Fármacos Neuroprotectores/química , Piperidinas/química , Acetilcolinesterasa/química , Butirilcolinesterasa/química , Clorgilina/química , Donepezilo , Flavina-Adenina Dinucleótido/química , Humanos , Indanos/química , Cinética , Modelos Moleculares , Monoaminooxidasa/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
9.
Biochim Biophys Acta ; 1844(2): 389-97, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24247011

RESUMEN

Since cyanide potentiates the inhibitory activity of several monoamine oxidase (MAO) inhibitors, a series of carbonitrile-containing aminoheterocycles was examined to explore the role of nitriles in determining the inhibitory activity against MAO. Dicarbonitrile aminofurans were found to be potent, selective inhibitors against MAO A. The origin of the MAO A selectivity was identified by combining spectroscopic and computational methods. Spectroscopic changes induced in MAO A by mono- and dicarbonitrile inhibitors were different, providing experimental evidence for distinct binding modes to the enzyme. Similar differences were also found between the binding of dicarbonitrile compounds to MAO A and to MAO B. Stabilization of the flavin anionic semiquinone by monocarbonitrile compounds, but destabilization by dicarbonitriles, provided further support to the distinct binding modes of these compounds and their interaction with the flavin ring. Molecular modeling studies supported the role played by the nitrile and amino groups in anchoring the inhibitor to the binding cavity. In particular, the results highlight the role of Asn181 and Ile335 in assisting the interaction of the nitrile-containing aminofuran ring. The network of interactions afforded by the specific attachment of these functional groups provides useful guidelines for the design of selective, reversible MAO A inhibitors.


Asunto(s)
Asparagina/fisiología , Furanos/química , Isoleucina/fisiología , Inhibidores de la Monoaminooxidasa/química , Monoaminooxidasa/química , Sitios de Unión , Flavina-Adenina Dinucleótido/análogos & derivados , Flavina-Adenina Dinucleótido/química , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/metabolismo , Dominios y Motivos de Interacción de Proteínas , Análisis Espectral , Relación Estructura-Actividad
10.
J Comput Aided Mol Des ; 29(2): 183-98, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25425329

RESUMEN

Recently developed multi-targeted ligands are novel drug candidates able to interact with monoamine oxidase A and B; acetylcholinesterase and butyrylcholinesterase; or with histamine N-methyltransferase and histamine H3-receptor (H3R). These proteins are drug targets in the treatment of depression, Alzheimer's disease, obsessive disorders, and Parkinson's disease. A probabilistic method, the Parzen-Rosenblatt window approach, was used to build a "predictor" model using data collected from the ChEMBL database. The model can be used to predict both the primary pharmaceutical target and off-targets of a compound based on its structure. Molecular structures were represented based on the circular fingerprint methodology. The same approach was used to build a "predictor" model from the DrugBank dataset to determine the main pharmacological groups of the compound. The study of off-target interactions is now recognised as crucial to the understanding of both drug action and toxicology. Primary pharmaceutical targets and off-targets for the novel multi-target ligands were examined by use of the developed cheminformatic method. Several multi-target ligands were selected for further study, as compounds with possible additional beneficial pharmacological activities. The cheminformatic targets identifications were in agreement with four 3D-QSAR (H3R/D1R/D2R/5-HT2aR) models and by in vitro assays for serotonin 5-HT1a and 5-HT2a receptor binding of the most promising ligand (71/MBA-VEG8).


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedad de Parkinson/tratamiento farmacológico , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Bases de Datos Factuales , Descubrimiento de Drogas , Histamina N-Metiltransferasa/química , Histamina N-Metiltransferasa/metabolismo , Humanos , Ligandos , Monoaminooxidasa/química , Monoaminooxidasa/metabolismo , Relación Estructura-Actividad Cuantitativa , Receptor de Serotonina 5-HT2A/química , Receptor de Serotonina 5-HT2A/metabolismo
11.
J Chem Inf Model ; 54(4): 1200-7, 2014 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-24601544

RESUMEN

Imidazoline ligands in I2-type binding sites in the brain alter monoamine turnover and release. One example of an I2 binding site characterized by binding studies, kinetics, and crystal structure has been described in monoamine oxidase B (MAO B). MAO A also binds imidazolines but has a different active site structure. Docking and molecular dynamics were used to explore how 2-(2-benzofuranyl)-2-imidazoline hydrochloride (2-BFI) binds to MAO A and to explain why tranylcypromine increases tight binding to MAO B. The energy for 2-BFI binding to MAO A was comparable to that for tranylcypromine-modified MAO B, but the location of 2-BFI in the MAO A could be anywhere in the monopartite substrate cavity. Binding to the tranylcypromine-modified MAO B was with high affinity and in the entrance cavity as in the crystal structure, but the energies of interaction with the native MAO B were less favorable. Molecular dynamics revealed that the entrance cavity of MAO B after tranylcypromine modification is both smaller and less flexible. This change in the presence of tranylcypromine may be responsible for the greater affinity of tranylcypromine-modified MAO B for imidazoline ligands.


Asunto(s)
Imidazolinas/metabolismo , Monoaminooxidasa/metabolismo , Sitios de Unión , Humanos , Imidazolinas/química , Simulación de Dinámica Molecular
12.
Methods Mol Biol ; 2558: 63-74, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36169856

RESUMEN

The covalently bound FAD cofactor in monoamine oxidase (MAO) is reduced by the amine substrate and reoxidized by oxygen. Visible spectroscopy provides a convenient tool to study the interaction of ligands and the kinetics of the half-reactions for mechanistic investigations. Equilibrium redox titrations allow measurement of redox potentials, while rapid mixing experiments allow determination of the rate of reduction by different substrates and of covalent adduct formation by irreversible inactivators. Three techniques are described: (1) measuring ligand interactions by alterations in the spectrum, especially at 495 nm; (2) reducing MAO, including the essentials for anaerobic procedures; and (3) studying kinetics of reduction, reoxidation, or inactivation of MAO.


Asunto(s)
Flavina-Adenina Dinucleótido , Monoaminooxidasa , Aminas , Flavina-Adenina Dinucleótido/metabolismo , Cinética , Ligandos , Monoaminooxidasa/metabolismo , Oxidación-Reducción , Oxígeno , Análisis Espectral
13.
J Neural Transm (Vienna) ; 118(7): 1003-19, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21643793

RESUMEN

The search for new monoamine oxidase inhibitors aims to identify potential lead compounds that are more potent and selective than current drugs for use in treating a variety of neuropsychiatric and neurodegenerative conditions. An integral part of this process is a kinetic examination of monoamine oxidases in the presence of the inhibitor, to determine potency and selectivity and to obtain information on mechanism. To date, kinetic data obtained with a probe substrate have been analysed by fitting to the Michaelis-Menten equation which describes a unireactant process in which velocity is related to substrate concentration in a rectangular hyperbolic manner. In this study, we present evidence that monoamine oxidase activity is often not adequately described by this approach. We outline a novel equation strategy that takes account of substrate and inhibitor binding to oxidised and reduced enzyme forms, and quantifies differences between substrates and inhibitors in this regard. When combined with plate reader-based experimental techniques that allow large numbers of substrate and inhibitor concentrations to be used, and the global nonlinear regression facilities of GraphPad Prism software, this straightforward approach allows more appropriate analyses of monoamine oxidase by non-experts than has previously been possible.


Asunto(s)
Modelos Neurológicos , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/química , Monoaminooxidasa/metabolismo , Farmacocinética , Animales , Unión Competitiva/fisiología , Humanos , Neuroquímica/métodos , Análisis de Regresión , Programas Informáticos , Especificidad por Sustrato/fisiología
14.
J Neural Transm (Vienna) ; 118(7): 1031-41, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21190052

RESUMEN

Inhibition of monoamine oxidase is one way to treat depression and anxiety. The information now available on the pharmacokinetics of flavonoids and of the components of tobacco prompted an exploration of whether a healthy diet (with or without smoking) provides active compounds in amounts sufficient to partially inhibit monoamine oxidase. A literature search was used to identify dietary monoamine oxidase inhibitors, the levels of these compounds in foods, the pharmacokinetics of the absorption and distribution, and tissue levels observed. An estimated daily intake and the expected tissue concentrations were compared with the measured efficacies of the compounds as inhibitors of monoamine oxidases. Norharman, harman and quercetin dietary presence, pharmacokinetics, and tissue levels were consistent with significant levels reaching neuronal monoamine oxidase from the diet or smoking; 1,2,3,4-tetrahydroisoquinoline, eugenol, 1-piperoylpiperidine, and coumarin were not. Quercetin was equipotent with norharman as a monoamine oxidase A inhibitor and its metabolite, isorhamnetin, also inhibits. Total quercetin was the highest of the compounds in the sample diet. Although bioavailability was variable depending on the source, a healthy diet contains amounts of quercetin that might give sufficient amounts in brain to induce, by monoamine oxidase A inhibition, a small decrease in neurotransmitter breakdown.


Asunto(s)
Trastornos de Ansiedad/dietoterapia , Trastorno Depresivo/dietoterapia , Harmina/análogos & derivados , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/metabolismo , Quercetina/fisiología , Serotonina/metabolismo , Animales , Trastornos de Ansiedad/enzimología , Carbolinas , Trastorno Depresivo/enzimología , Harmina/fisiología , Harmina/uso terapéutico , Humanos , Inhibidores de la Monoaminooxidasa/uso terapéutico , Quercetina/uso terapéutico
15.
Pharmacol Res ; 62(6): 475-88, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20832472

RESUMEN

An allosteric binding site with high affinity for imidazoline I(2) ligands has been proposed to exist on monoamine oxidase-B (MAO-B). However, enzyme inhibition only occurs at ligand concentrations far higher than are required to saturate this site. We here confirm previous reports that inactivation of recombinant human MAO-B with tranylcypromine results in the formation of a high affinity I(2) site on the enzyme, measured as an increase in binding of [(3)H]2-BFI. Incubation of MAO-B with 2-phenylethylamine, an endogenous trace amine and MAO-B substrate, resulted in a progressive loss of enzyme activity, increased enzyme mass, distinct spectral changes and, as was observed with tranylcypromine, a parallel increase in high affinity binding of [(3)H]2-BFI. Kinetic studies of the mechanism by which 2-BFI inhibits MAO-B activity suggested binding of 2-BFI, at micromolar concentrations, to a site distinct from the active site on at least two forms of the pure enzyme, probably corresponding to oxidised and reduced enzyme states. Studies with mutant enzymes revealed a pattern of changes consistent with binding of 2-BFI to the substrate entrance channel of human MAO-B. Structural data confirm that high affinity binding of I(2) ligands occurs within the entrance channel of inactive enzyme, while lower affinity binding at the same location in catalytically active enzyme results in mixed inhibition of MAO-B activity. High affinity I(2) sites may form in vivo due to inactivation of a portion of MAO-B during amine oxidation, while the low affinity I(2) site on active enzyme is a target for novel MAO-B inhibitor drugs.


Asunto(s)
Receptores de Imidazolina/metabolismo , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/química , Monoaminooxidasa/metabolismo , Tranilcipromina/farmacología , Regulación Alostérica , Benzofuranos/metabolismo , Benzofuranos/farmacología , Sitios de Unión , Humanos , Imidazoles/metabolismo , Imidazoles/farmacología , Ligandos , Modelos Moleculares , Monoaminooxidasa/genética , Mutación , Fenetilaminas/farmacología , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
Bioorg Med Chem ; 18(4): 1388-95, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-20123154

RESUMEN

2-Arylthiomorpholine and 2-arylthiomorpholin-5-one derivatives, designed as rigid and/or non-basic phenylethylamine analogues, were evaluated as rat and human monoamine oxidase inhibitors. Molecular docking provided insight into the binding mode of these inhibitors and rationalized their different potencies. Making the phenylethylamine scaffold rigid by fixing the amine chain in an extended six-membered ring conformation increased MAO-B (but not MAO-A) inhibitory activity relative to the more flexible alpha-methylated derivative. The presence of a basic nitrogen atom is not a prerequisite in either MAO-A or MAO-B. The best K(i) values were in the 10(-8)M range, with selectivities towards human MAO-B exceeding 2000-fold.


Asunto(s)
Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/efectos de los fármacos , Morfolinas/farmacología , Animales , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Inhibidores de la Monoaminooxidasa/química , Morfolinas/química , Ratas
17.
R Soc Open Sci ; 7(4): 200050, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32431898

RESUMEN

A new series of N'-substituted benzylidene-2-(4-oxo-2-phenyl-1,4-dihydroquinazolin-3(2H)-yl)acetohydrazide (5a-5h) has been synthesized, characterized by FT-IR, NMR spectroscopy and mass spectrometry and tested against human monoamine oxidase (MAO) A and B. Only (4-hydroxy-3-methoxybenzylidene) substituted compounds gave submicromolar inhibition of MAO-A and MAO-B. Changing the phenyl substituent to methyl on the unsaturated quinazoline ring (12a-12d) decreased inhibition, but a less flexible linker (14a-14d) resulted in selective micromolar inhibition of hMAO-B providing insight for ongoing design.

18.
Front Chem ; 6: 169, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29892597

RESUMEN

Successful propargylamine drugs such as deprenyl inactivate monoamine oxidase (MAO), a target in multi-faceted approaches to prevent neurodegeneration in the aging population, but the chemical structure and mechanism of the irreversible inhibition are still debated. We characterized the covalent cyanine structure linking the multi-target propargylamine inhibitor ASS234 and the flavin adenine dinucleotide in MAO-A using a combination of ultra-high performance liquid chromatography, spectroscopy, mass spectrometry, and computational methods. The partial double bond character of the cyanine chain gives rise to 4 interconverting geometric isomers of the adduct which were chromatographically separated at low temperatures. The configuration of the cyanine linker governs adduct stability with segments of much higher flexibility and rigidity than previously hypothesized. The findings indicate the importance of intramolecular electrostatic interactions in the MAO binding site and provide key information relevant to incorporation of the propargyl moiety into novel multi-target drugs. Based on the structure, we propose a mechanism of MAO inactivation applicable to all propargylamine inhibitors.

19.
Clin Transl Med ; 7(1): 3, 2018 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-29340951

RESUMEN

Diseases of infection, of neurodegeneration (such as Alzheimer's and Parkinson's diseases), and of malignancy (cancers) have complex and varied causative factors. Modern drug discovery has the power to identify potential modulators for multiple targets from millions of compounds. Computational approaches allow the determination of the association of each compound with its target before chemical synthesis and biological testing is done. These approaches depend on the prior identification of clinically and biologically validated targets. This Perspective will focus on the molecular and computational approaches that underpin drug design by medicinal chemists to promote understanding and collaboration with clinical scientists.

20.
J Am Chem Soc ; 129(51): 16091-7, 2007 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-18044898

RESUMEN

It was recently suggested that partially reduced monoamine oxidase (MAO) A contains an equilibrium mixture of an anionic flavin radical and a tyrosyl radical (Rigby, S. E.; et al. J. Biol. Chem. 2005, 280, 4627-4632). These observations formed the basis for a revised radical mechanism for MAO. In contrast, an earlier study of MAO B only found evidence for an anionic flavin radical (DeRose, V. J.; et al. Biochemistry 1996, 35, 11085-11091). To resolve the discrepancy, we have performed continuous-wave electron paramagnetic resonance at 94 GHz (W-band) on the radical form of MAO A. A comparison with d-amino acid oxidase (DAAO) demonstrates that both enzymes only contain anionic flavin radicals. Pulsed electron-nuclear double resonance spectra of the two enzymes recorded at 9 GHz (X-band) reveal distinct hyperfine coupling patterns for the two flavins. Density functional theory calculations show that these differences can be understood in terms of the difference at C8alpha of the isoalloxazine ring. DAAO contains a noncovalently bound flavin whereas MAO A contains a flavin covalently bound to a cysteinyl residue at C8alpha. The similar electronic structures and hydrophobic environments of MAO and DAAO, and the similar structural motifs of their substrates suggest that a direct hydride transfer catalytic mechanism established for DAAO (Umhau, S.; et al. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 12463-12468) should be considered for MAO.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Flavinas/química , Monoaminooxidasa/química , Aniones , Enlace de Hidrógeno , Oxidación-Reducción , Espectrometría Raman
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA