Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Respir Crit Care Med ; 203(2): 192-201, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33217246

RESUMEN

Rationale: In life-threatening coronavirus disease (COVID-19), corticosteroids reduce mortality, suggesting that immune responses have a causal role in death. Whether this deleterious inflammation is primarily a direct reaction to the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or an independent immunopathologic process is unknown.Objectives: To determine SARS-CoV-2 organotropism and organ-specific inflammatory responses and the relationships among viral presence, inflammation, and organ injury.Methods: Tissue was acquired from 11 detailed postmortem examinations. SARS-CoV-2 organotropism was mapped by using multiplex PCR and sequencing, with cellular resolution achieved by in situ viral S (spike) protein detection. Histologic evidence of inflammation was quantified from 37 anatomic sites, and the pulmonary immune response was characterized by using multiplex immunofluorescence.Measurements and Main Results: Multiple aberrant immune responses in fatal COVID-19 were found, principally involving the lung and reticuloendothelial system, and these were not clearly topologically associated with the virus. Inflammation and organ dysfunction did not map to the tissue and cellular distribution of SARS-CoV-2 RNA and protein between or within tissues. An arteritis was identified in the lung, which was further characterized as a monocyte/myeloid-rich vasculitis, and occurred together with an influx of macrophage/monocyte-lineage cells into the pulmonary parenchyma. In addition, stereotyped abnormal reticuloendothelial responses, including excessive reactive plasmacytosis and iron-laden macrophages, were present and dissociated from viral presence in lymphoid tissues.Conclusions: Tissue-specific immunopathology occurs in COVID-19, implicating a significant component of the immune-mediated, virus-independent immunopathologic process as a primary mechanism in severe disease. Our data highlight novel immunopathologic mechanisms and validate ongoing and future efforts to therapeutically target aberrant macrophage and plasma-cell responses as well as promote pathogen tolerance in COVID-19.


Asunto(s)
COVID-19/inmunología , Inflamación/virología , Pulmón/inmunología , Insuficiencia Multiorgánica/virología , SARS-CoV-2/inmunología , Anciano , Anciano de 80 o más Años , Autopsia , Biopsia , COVID-19/patología , COVID-19/virología , Prueba de Ácido Nucleico para COVID-19 , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Inflamación/inmunología , Inflamación/patología , Pulmón/patología , Pulmón/virología , Masculino , Insuficiencia Multiorgánica/inmunología , Insuficiencia Multiorgánica/patología , SARS-CoV-2/patogenicidad , Índice de Severidad de la Enfermedad
2.
Proc Natl Acad Sci U S A ; 116(45): 22764-22773, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31636194

RESUMEN

Neospora caninum, a cyst-forming apicomplexan parasite, is a leading cause of neuromuscular diseases in dogs as well as fetal abortion in cattle worldwide. The importance of the domestic and sylvatic life cycles of Neospora, and the role of vertical transmission in the expansion and transmission of infection in cattle, is not sufficiently understood. To elucidate the population genomics of Neospora, we genotyped 50 isolates collected worldwide from a wide range of hosts using 19 linked and unlinked genetic markers. Phylogenetic analysis and genetic distance indices resolved a single genotype of N. caninum Whole-genome sequencing of 7 isolates from 2 different continents identified high linkage disequilibrium, significant structural variation, but only limited polymorphism genome-wide, with only 5,766 biallelic single nucleotide polymorphisms (SNPs) total. Greater than half of these SNPs (∼3,000) clustered into 6 distinct haploblocks and each block possessed limited allelic diversity (with only 4 to 6 haplotypes resolved at each cluster). Importantly, the alleles at each haploblock had independently segregated across the strains sequenced, supporting a unisexual expansion model that is mosaic at 6 genomic blocks. Integrating seroprevalence data from African cattle, our data support a global selective sweep of a highly inbred livestock pathogen that originated within European dairy stock and expanded transcontinentally via unisexual mating and vertical transmission very recently, likely the result of human activities, including recurrent migration, domestication, and breed development of bovid and canid hosts within similar proximities.


Asunto(s)
Genoma , Interacciones Huésped-Parásitos , Neospora/genética , Animales , Bovinos , Genotipo , Recombinación Genética
3.
Cell Tissue Res ; 375(2): 409-424, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30259138

RESUMEN

The in vitro 3D culture of intestinal epithelium is a valuable resource in the study of its function. Organoid culture exploits stem cells' ability to regenerate and produce differentiated epithelium. Intestinal organoid models from rodent or human tissue are widely available whereas large animal models are not. Livestock enteric and zoonotic diseases elicit significant morbidity and mortality in animal and human populations. Therefore, livestock species-specific models may offer novel insights into host-pathogen interactions and disease responses. Bovine and porcine jejunum were obtained from an abattoir and their intestinal crypts isolated, suspended in Matrigel, cultured, cryopreserved and resuscitated. 'Rounding' of crypts occurred followed by budding and then enlargement of the organoids. Epithelial cells were characterised using immunofluorescent staining and confocal microscopy. Organoids were successfully infected with Toxoplasma gondii or Salmonella typhimurium. This 3D organoid model offers a long-term, renewable resource for investigating species-specific intestinal infections with a variety of pathogens.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Mucosa Intestinal/metabolismo , Animales , Bovinos , Diferenciación Celular , Criopreservación , Ganado , Ratones Endogámicos C57BL , Organoides/metabolismo , Fenotipo , Salmonella typhimurium/fisiología , Porcinos , Supervivencia Tisular , Toxoplasma/fisiología
4.
Parasitol Res ; 116(10): 2707-2719, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28803361

RESUMEN

Toxoplasma gondii and Neospora caninum are closely related intracellular protozoan parasites and tissue cyst-forming Coccidia of the phylum Apicomplexa. There are remarkable similarities between the morphology, genomes and transcriptomes of both parasites. Toxoplasma is zoonotic, with a wide host range and is mainly transmitted horizontally between its definitive host, the cat, and its intermediate hosts. Neospora causes disease within a narrow host range and with reduced virulence potential to the hosts. The dog is the definitive host of Neospora and its epidemiology in cattle mainly depends on vertical transmission. What causes these biological differences is not well understood. Since these parasites secrete an array of secretory proteins, including kinases, during infection to manipulate host cell responses. Host-parasite interactions due to phosphorylation of host cell proteins by T. gondii kinases enhance virulence and maintenance of infection. In this study, proteome-wide phosphorylation events of host cell proteins were investigated in response to infection with T. gondii and N. caninum using phosphoproteomic analyses, followed by pathway analysis on host signalling pathways. A few interesting differences in host responses at both the qualitative and quantitative levels were identified between the two infections; about one third of the phosphoproteomes, approximately 21% of the phospho-motifs and several pathways such as glycolysis/gluconeogenesis and mTOR pathways of the host cell were found differentially enriched between infection with these parasites. Identifying the differences in host-parasite interactions represents a promising step forward for uncovering the biological dissimilarities between both parasites.


Asunto(s)
Coccidiosis/metabolismo , Neospora/fisiología , Proteínas/metabolismo , Proteoma/metabolismo , Toxoplasma/fisiología , Toxoplasmosis/metabolismo , Coccidiosis/genética , Coccidiosis/parasitología , Interacciones Huésped-Parásitos , Humanos , Fosforilación , Proteínas/genética , Proteolisis , Proteoma/genética , Toxoplasmosis/genética , Toxoplasmosis/parasitología
5.
J Clin Virol ; 171: 105620, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38237303

RESUMEN

Simultaneously characterising the genomic information of coronaviruses and the underlying nasal microbiome from a single clinical sample would help characterise infection and disease. Metatranscriptomic approaches can be used to sequence SARS-CoV-2 (and other coronaviruses) and identify mRNAs associated with active transcription in the nasal microbiome. However, given the large sequence background, unenriched metatranscriptomic approaches often do not sequence SARS-CoV-2 to sufficient read and coverage depth to obtain a consensus genome, especially with moderate and low viral loads from clinical samples. In this study, various enrichment methods were assessed to detect SARS-CoV-2, identify lineages and define the nasal microbiome. The methods were underpinned by Oxford Nanopore long-read sequencing and variations of sequence independent single primer amplification (SISPA). The utility of the method(s) was also validated on samples from patients infected seasonal coronaviruses. The feasibility of profiling the nasal microbiome using these enrichment methods was explored. The findings shed light on the performance of different enrichment strategies and their applicability in characterising the composition of the nasal microbiome.


Asunto(s)
COVID-19 , Microbiota , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Genoma Viral , Microbiota/genética , Nasofaringe
6.
Genome Biol ; 24(1): 47, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36915185

RESUMEN

BACKGROUND: The mutational landscape of SARS-CoV-2 varies at the dominant viral genome sequence and minor genomic variant population. During the COVID-19 pandemic, an early substitution in the genome was the D614G change in the spike protein, associated with an increase in transmissibility. Genomes with D614G are accompanied by a P323L substitution in the viral polymerase (NSP12). However, P323L is not thought to be under strong selective pressure. RESULTS: Investigation of P323L/D614G substitutions in the population shows rapid emergence during the containment phase and early surge phase during the first wave. These substitutions emerge from minor genomic variants which become dominant viral genome sequence. This is investigated in vivo and in vitro using SARS-CoV-2 with P323 and D614 in the dominant genome sequence and L323 and G614 in the minor variant population. During infection, there is rapid selection of L323 into the dominant viral genome sequence but not G614. Reverse genetics is used to create two viruses (either P323 or L323) with the same genetic background. L323 shows greater abundance of viral RNA and proteins and a smaller plaque morphology than P323. CONCLUSIONS: These data suggest that P323L is an important contribution in the emergence of variants with transmission advantages. Sequence analysis of viral populations suggests it may be possible to predict the emergence of a new variant based on tracking the frequency of minor variant genomes. The ability to predict an emerging variant of SARS-CoV-2 in the global landscape may aid in the evaluation of medical countermeasures and non-pharmaceutical interventions.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias , Antecedentes Genéticos , Genoma Viral , Mutación
7.
Gigascience ; 112022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35639883

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a complex strategy for the transcription of viral subgenomic mRNAs (sgmRNAs), which are targets for nucleic acid diagnostics. Each of these sgmRNAs has a unique 5' sequence, the leader-transcriptional regulatory sequence gene junction (leader-TRS junction), that can be identified using sequencing. High-resolution sequencing has been used to investigate the biology of SARS-CoV-2 and the host response in cell culture and animal models and from clinical samples. LeTRS, a bioinformatics tool, was developed to identify leader-TRS junctions and can be used as a proxy to quantify sgmRNAs for understanding virus biology. LeTRS is readily adaptable for other coronaviruses such as Middle East respiratory syndrome coronavirus or a future newly discovered coronavirus. LeTRS was tested on published data sets and novel clinical samples from patients and longitudinal samples from animal models with coronavirus disease 2019. LeTRS identified known leader-TRS junctions and identified putative novel sgmRNAs that were common across different mammalian species. This may be indicative of an evolutionary mechanism where plasticity in transcription generates novel open reading frames, which can then subject to selection pressure. The data indicated multiphasic abundance of sgmRNAs in two different animal models. This recapitulates the relative sgmRNA abundance observed in cells at early points in infection but not at late points. This pattern is reflected in some human nasopharyngeal samples and therefore has implications for transmission models and nucleic acid-based diagnostics. LeTRS provides a quantitative measure of sgmRNA abundance from sequencing data. This can be used to assess the biology of SARS-CoV-2 (or other coronaviruses) in clinical and nonclinical samples, especially to evaluate different variants and medical countermeasures that may influence viral RNA synthesis.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Técnicas de Cultivo de Célula , Biología Computacional , Humanos , Mamíferos/genética , Modelos Animales , ARN Mensajero/genética , SARS-CoV-2/genética
8.
mSphere ; 7(3): e0091321, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35491827

RESUMEN

New variants of SARS-CoV-2 are continuing to emerge and dominate the global sequence landscapes. Several variants have been labeled variants of concern (VOCs) because they may have a transmission advantage, increased risk of morbidity and/or mortality, or immune evasion upon a background of prior infection or vaccination. Placing the VOCs in context with the underlying variability of SARS-CoV-2 is essential in understanding virus evolution and selection pressures. Dominant genome sequences and the population genetics of SARS-CoV-2 in nasopharyngeal swabs from hospitalized patients were characterized. Nonsynonymous changes at a minor variant level were identified. These populations were generally preserved when isolates were amplified in cell culture. To place the Alpha, Beta, Delta, and Omicron VOCs in context, their growth was compared to clinical isolates of different lineages from earlier in the pandemic. The data indicated that the growth in cell culture of the Beta variant was more than that of the other variants in Vero E6 cells but not in hACE2-A549 cells. Looking at each time point, Beta grew more than the other VOCs in hACE2-A549 cells at 24 to 48 h postinfection. At 72 h postinfection there was no difference in the growth of any of the variants in either cell line. Overall, this work suggested that exploring the biology of SARS-CoV-2 is complicated by population dynamics and that these need to be considered with new variants. In the context of variation seen in other coronaviruses, the variants currently observed for SARS-CoV-2 are very similar in terms of their clinical spectrum of disease. IMPORTANCE SARS-CoV-2 is the causative agent of COVID-19. The virus has spread across the planet, causing a global pandemic. In common with other coronaviruses, SARS-CoV-2 genomes can become quite diverse as a consequence of replicating inside cells. This has given rise to multiple variants from the original virus that infected humans. These variants may have different properties and in the context of a widespread vaccination program may render vaccines less effective. Our research confirms the degree of genetic diversity of SARS-CoV-2 in patients. By comparing the growth of previous variants to the pattern seen with four variants of concern (VOCs) (Alpha, Beta, Delta, and Omicron), we show that, at least in cells, Beta variant growth exceeds that of Alpha, Delta, and Omicron VOCs at 24 to 48 h in both Vero E6 and hACE2-A549 cells, but by 72 h postinfection, the amount of virus is not different from that of the other VOCs.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Fenotipo , SARS-CoV-2/genética
9.
Cell Rep ; 38(6): 110344, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35093235

RESUMEN

SARS-CoV-2 has a broad mammalian species tropism infecting humans, cats, dogs, and farmed mink. Since the start of the 2019 pandemic, several reverse zoonotic outbreaks of SARS-CoV-2 have occurred in mink, one of which reinfected humans and caused a cluster of infections in Denmark. Here we investigate the molecular basis of mink and ferret adaptation and demonstrate the spike mutations Y453F, F486L, and N501T all specifically adapt SARS-CoV-2 to use mustelid ACE2. Furthermore, we risk assess these mutations and conclude mink-adapted viruses are unlikely to pose an increased threat to humans, as Y453F attenuates the virus replication in human cells and all three mink adaptations have minimal antigenic impact. Finally, we show that certain SARS-CoV-2 variants emerging from circulation in humans may naturally have a greater propensity to infect mustelid hosts and therefore these species should continue to be surveyed for reverse zoonotic infections.


Asunto(s)
Adaptación Biológica/inmunología , SARS-CoV-2/genética , Zoonosis Virales/genética , Animales , COVID-19 , Hurones/inmunología , Aptitud Genética/genética , Humanos , Visón/inmunología , Mutación , Pandemias , Sistema Respiratorio/virología , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/inmunología
10.
Front Cell Infect Microbiol ; 10: 579833, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33154954

RESUMEN

In vitro development of the complete life cycle of Eimeria species has been achieved in primary cultures of avian epithelial cells with low efficiency. The use of immortalized cell lines simplifies procedures but only allows partial development through one round of parasite invasion and intracellular replication. We have assessed the suitability of Madin-Darby Bovine Kidney (MDBK) cells to support qualitative and quantitative studies on sporozoite invasion and intracellular development of Eimeria tenella. Analysis of parasite ultrastructure by transmission electron microscopy and serial block face-scanning electron microscopy proved the suitability of the system to generate good quality schizonts and first-generation merozoites. Parasite protein expression profiles elucidated by mass spectrometry corroborated previous findings occurring during the development of the parasite such as the presence of alternative types of surface antigen at different stages and increased abundance of proteins from secretory organelles during invasion and endogenous development. Quantitative PCR (qPCR) allowed the tracking of development by detecting DNA division, whereas reverse transcription qPCR of sporozoite- and merozoite-specific genes could detect early changes before cell division and after merozoite formation, respectively. These results correlated with the analysis of development using ImageJ semi-automated image analysis of fluorescent parasites, demonstrating the suitability and reproducibility of the MDBK culture system. This systems also allowed the evaluation of the effects on invasion and development when sporozoites were pre-incubated with anticoccidial drugs, showing similar effects to those reported before. We have described through this study a series of methods and assays for the further application of this in vitro culture model to more complex studies of Eimeria including basic research on parasite cell biology and host-parasite interactions and for screening anticoccidial drugs.


Asunto(s)
Eimeria tenella , Eimeria , Animales , Bovinos , Técnicas de Cultivo de Célula , Pollos , Reproducibilidad de los Resultados , Esporozoítos
11.
Pathogens ; 9(9)2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32942559

RESUMEN

Despite the importance of bovine neosporosis, relevant knowledge gaps remain concerning the pathogenic mechanisms of Neospora caninum. Infection of the placenta is a crucial event in the pathogenesis of the disease; however, very little is known about the relation of the parasite with this target organ. Recent studies have shown that isolates with important variations in virulence also show different interactions with the bovine trophoblast cell line F3 in terms of proliferative capacity and transcriptome host cell modulation. Herein, we used the same model of infection to study the interaction of Neospora with these target cells at the proteomic level using LC-MS/MS over the course of the parasite lytic cycle. We also analysed the proteome differences between high- (Nc-Spain7) and low-virulence (Nc-Spain1H) isolates. The results showed that mitochondrial processes and metabolism were the main points of Neospora-host interactions. Interestingly, Nc-Spain1H infection showed a higher level of influence on the host cell proteome than Nc-Spain7 infection.

12.
Viruses ; 12(10)2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33066701

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). Sequencing the viral genome as the outbreak progresses is important, particularly in the identification of emerging isolates with different pathogenic potential and to identify whether nucleotide changes in the genome will impair clinical diagnostic tools such as real-time PCR assays. Although single nucleotide polymorphisms and point mutations occur during the replication of coronaviruses, one of the biggest drivers in genetic change is recombination. This can manifest itself in insertions and/or deletions in the viral genome. Therefore, sequencing strategies that underpin molecular epidemiology and inform virus biology in patients should take these factors into account. A long amplicon/read length-based RT-PCR sequencing approach focused on the Oxford Nanopore MinION/GridION platforms was developed to identify and sequence the SARS-CoV-2 genome in samples from patients with or suspected of COVID-19. The protocol, termed Rapid Sequencing Long Amplicons (RSLAs) used random primers to generate cDNA from RNA purified from a sample from a patient, followed by single or multiplex PCRs to generate longer amplicons of the viral genome. The base protocol was used to identify SARS-CoV-2 in a variety of clinical samples and proved sensitive in identifying viral RNA in samples from patients that had been declared negative using other nucleic acid-based assays (false negative). Sequencing the amplicons revealed that a number of patients had a proportion of viral genomes with deletions.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/virología , Neumonía Viral/virología , Betacoronavirus/aislamiento & purificación , COVID-19 , Prueba de COVID-19 , Vacunas contra la COVID-19 , Técnicas de Laboratorio Clínico , Infecciones por Coronavirus/diagnóstico , ADN Complementario/análisis , ADN Complementario/genética , ADN Viral/análisis , ADN Viral/genética , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Epidemiología Molecular , Reacción en Cadena de la Polimerasa Multiplex , Pandemias , Neumonía Viral/diagnóstico , ARN Viral/análisis , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2 , Análisis de Secuencia
13.
Artículo en Inglés | MEDLINE | ID: mdl-31555604

RESUMEN

When transmitted through the oral route, Toxoplasma gondii first interacts with its host at the small intestinal epithelium. This interaction is crucial to controlling initial invasion and replication, as well as shaping the quality of the systemic immune response. It is therefore an attractive target for the design of novel vaccines and adjuvants. However, due to a lack of tractable infection models, we understand surprisingly little about the molecular pathways that govern this interaction. The in vitro culture of small intestinal epithelium as 3D enteroids shows great promise for modeling the epithelial response to infection. However, the enclosed luminal space makes the application of infectious agents to the apical epithelial surface challenging. Here, we have developed three novel enteroid-based techniques for modeling T. gondii infection. In particular, we have adapted enteroid culture protocols to generate collagen-supported epithelial sheets with an exposed apical surface. These cultures retain epithelial polarization, and the presence of fully differentiated epithelial cell populations. They are susceptible to infection with, and support replication of, T. gondii. Using quantitative label-free mass spectrometry, we show that T. gondii infection of the enteroid epithelium is associated with up-regulation of proteins associated with cholesterol metabolism, extracellular exosomes, intermicrovillar adhesion, and cell junctions. Inhibition of host cholesterol and isoprenoid biosynthesis with Atorvastatin resulted in a reduction in parasite load only at higher doses, indicating that de novo synthesis may support, but is not required for, parasite replication. These novel models therefore offer tractable tools for investigating how interactions between T. gondii and the host intestinal epithelium influence the course of infection.


Asunto(s)
Interacciones Huésped-Parásitos/fisiología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/parasitología , Toxoplasma/fisiología , Toxoplasma/patogenicidad , Animales , Técnicas de Cultivo de Célula , Colesterol , Colágeno , Modelos Animales de Enfermedad , Células Epiteliales/parasitología , Células Epiteliales/patología , Humanos , Mucosa Intestinal/diagnóstico por imagen , Mucosa Intestinal/patología , Ratones , Ratones Endogámicos C57BL
14.
Adv Exp Med Biol ; 627: 71-83, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18510015

RESUMEN

Genetic technologies developed in the last 20 years have lead to novel and exciting methods to identify genes and specific nucleotides within genes that control phenotypes in field collected organisms. In this review we define and explain two of these methods: linkage disequilibrium (LD) mapping and quantitative trait nucleotide (QTN) mapping. The power to detect valid genotype-phenotype associations with LD or QTN mapping depends critically on the extent to which segregating sites in a genome assort independently. LD mapping depends on markers being in disequilibrium with the genes that condition expression of the phenotype. In contrast, QTN mapping depends critically upon most proximal loci being at equilibrium. We show that both patterns actually exist in the genome of Anapheles gambiae, the most important malaria vector in sub-Saharan Africa while segregating sites appear to be largely in equilibrium throughout the genome of Aedes aegypti, the vector of Dengue and Yellow fever flaviviruses. We discuss additional approaches that will be needed to identify genes and nucleotides that control phenotypes in field collected organisms, focusing specifically on ongoing studies of genes conferring resistance to insecticides.


Asunto(s)
Vectores de Enfermedades , Insectos/genética , Resistencia a los Insecticidas/genética , Desequilibrio de Ligamiento , Animales , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
15.
Nat Genet ; 48(3): 299-307, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26829753

RESUMEN

Soil-transmitted nematodes, including the Strongyloides genus, cause one of the most prevalent neglected tropical diseases. Here we compare the genomes of four Strongyloides species, including the human pathogen Strongyloides stercoralis, and their close relatives that are facultatively parasitic (Parastrongyloides trichosuri) and free-living (Rhabditophanes sp. KR3021). A significant paralogous expansion of key gene families--families encoding astacin-like and SCP/TAPS proteins--is associated with the evolution of parasitism in this clade. Exploiting the unique Strongyloides life cycle, we compare the transcriptomes of the parasitic and free-living stages and find that these same gene families are upregulated in the parasitic stages, underscoring their role in nematode parasitism.


Asunto(s)
Genómica , Strongyloides/genética , Estrongiloidiasis/genética , Simbiosis/genética , Animales , Evolución Biológica , Humanos , Estadios del Ciclo de Vida/genética , Strongyloides/patogenicidad , Estrongiloidiasis/parasitología , Transcriptoma/genética
16.
Malar J ; 4: 16, 2005 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-15766386

RESUMEN

BACKGROUND: A single base pair mutation in the sodium channel confers knock-down resistance to pyrethroids in many insect species. Its occurrence in Anopheles mosquitoes may have important implications for malaria vector control especially considering the current trend for large scale pyrethroid-treated bednet programmes. Screening Anopheles gambiae populations for the kdr mutation has become one of the mainstays of programmes that monitor the development of insecticide resistance. The screening is commonly performed using a multiplex Polymerase Chain Reaction (PCR) which, since it is reliant on a single nucleotide polymorphism, can be unreliable. Here we present a reliable and potentially high throughput method for screening An. gambiae for the kdr mutation. METHODS: A Hot Ligation Oligonucleotide Assay (HOLA) was developed to detect both the East and West African kdr alleles in the homozygous and heterozygous states, and was optimized for use in low-tech developing world laboratories. Results from the HOLA were compared to results from the multiplex PCR for field and laboratory mosquito specimens to provide verification of the robustness and sensitivity of the technique. RESULTS AND DISCUSSION: The HOLA assay, developed for detection of the kdr mutation, gives a bright blue colouration for a positive result whilst negative reactions remain colourless. The results are apparent within a few minutes of adding the final substrate and can be scored by eye. Heterozygotes are scored when a sample gives a positive reaction to the susceptible probe and the kdr probe. The technique uses only basic laboratory equipment and skills and can be carried out by anyone familiar with the Enzyme-linked immunosorbent assay (ELISA) technique. A comparison to the multiplex PCR method showed that the HOLA assay was more reliable, and scoring of the plates was less ambiguous. CONCLUSION: The method is capable of detecting both the East and West African kdr alleles in the homozygous and heterozygous states from fresh or dried material using several DNA extraction methods. It is more reliable than the traditional PCR method and may be more sensitive for the detection of heterozygotes. It is inexpensive, simple and relatively safe making it suitable for use in resource-poor countries.


Asunto(s)
Anopheles/genética , Dermatoglifia del ADN/métodos , Insectos Vectores/genética , Resistencia a los Insecticidas/genética , Reacción en Cadena de la Polimerasa/métodos , Piretrinas/farmacología , Animales , Anopheles/efectos de los fármacos , Colorimetría/métodos , Cartilla de ADN/química , Femenino , Genotipo , Insectos Vectores/efectos de los fármacos , Malaria/prevención & control , Malaria/transmisión , Mutación Puntual/genética , Canales de Potasio con Entrada de Voltaje/genética , Sensibilidad y Especificidad
17.
Artículo en Inglés | MEDLINE | ID: mdl-24533291

RESUMEN

Treatment options for toxoplasmosis in humans are generally limited to the use of sulfonamide and/or pyrimethamine-based compounds. However, there is increasing evidence for clinical therapy failures in patients suggesting the existence of drug resistance in these classes of drug. In vitro resistance to sulfadiazine has been detected in three strains of Toxoplasma gondii isolated from clinical cases. In order to begin to understand the mechanisms of resistance, we undertook a difference-gel electrophoresis (DIGE) approach combined with mass spectrometry to identify proteins that are differentially expressed in sulfadiazine-resistance strains of the parasite. Naturally resistant strains TgA 103001 (Type I), TgH 32006 (Type II) and TgH 32045 (Type II variant) were compared to sensitive strains RH (Type I) and ME-49 (Type II) using DIGE and the modulated proteins analyzed using LC-MS/MS. In total, 68 differentially expressed protein spots were analyzed by mass spectrometer and 31 unique proteins, including four hypothetical proteins, were identified. Among the differentially expressed proteins, 44% were over-expressed in resistant strains and 56% were over-expressed in sensitive strains. The virulence-associated rhoptry protein, ROP2A, was found in greater abundance in both naturally resistant Type II strains TgH 32006 and TgH 32045 compared to the sensitive strain ME-49. Enolase 2 and IMC1 were found to be in greater abundance in sensitive strains RH and ME-49, and MIC2 was found to be more abundant in the sensitive strain ME-49. Proteins regulation of ROP2, MIC2, ENO2, IMC1 and GRA7 were confirmed by Western blot analysis. In addition, gene expression patterns of ROP2, MIC2, ENO2 and IMC1 were analyzed with qRT-PCR. This study provides the first proteomics insights into sulfadiazine resistance in T. gondii resistant strains isolated from clinical cases.

18.
PLoS One ; 2(11): e1243, 2007 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-18043750

RESUMEN

How often insecticide resistance mutations arise in natural insect populations is a fundamental question for understanding the evolution of resistance and also for modeling its spread. Moreover, the development of resistance is regarded as a favored model to study the molecular evolution of adaptive traits. In the malaria vector Anopheles gambiae two point mutations (L1014F and L1014S) in the voltage-gated sodium channel gene, that confer knockdown resistance (kdr) to DDT and pyrethroid insecticides, have been described. In order to determine whether resistance alleles result from single or multiple mutation events, genotyping of the kdr locus and partial sequencing of the upstream intron-1 was performed on a total of 288 A. gambiae S-form collected from 28 localities in 15 countries. Knockdown resistance alleles were found to be widespread in West Africa with co-occurrence of both 1014S and 1014F in West-Central localities. Differences in intron-1 haplotype composition suggest that kdr alleles may have arisen from at least four independent mutation events. Neutrality tests provided evidence for a selective sweep acting on this genomic region, particularly in West Africa. The frequency and distribution of these kdr haplotypes varied geographically, being influenced by an interplay between different mutational occurrences, gene flow and local selection. This has important practical implications for the management and sustainability of malaria vector control programs.


Asunto(s)
Anopheles/genética , Mutación , Animales , Anopheles/efectos de los fármacos , Secuencia de Bases , Cartilla de ADN , Resistencia a Medicamentos/genética , Femenino
19.
Exp Parasitol ; 112(1): 13-20, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16256988

RESUMEN

We have developed two reverse transcription polymerase chain reaction (RT-PCR) techniques to detect and quantify the transmission stages (gametocytes) of Plasmodium chabaudi malaria parasites. Both the qualitative and quantitative techniques are based on the amplification of mRNA coding for the P. chabaudi protein Pcs230, which is expressed exclusively in gametocytes. The quantitative RT-PCR (qRT-PCR) technique was developed and validated by examining serial dilutions of known gametocyte densities. The method generated a high correlation between calibration curves of blind samples (R(2)=0.86). The technique was found to be specific, reproducible, and time efficient for quantification of both patent and sub-patent gametocytemia with a sensitivity level 100-1000 times greater than microscopy. The qualitative RT-PCR (RT-PCR) technique was used to monitor the persistence and dynamics of P. chabaudi gametocytes following acute infection. Mice in two independent experiments were sampled for up to 87 days post-infection. RT-PCR showed that gametocytes can persist for up to 8 weeks, post-infection, whereas microscopy could only detect gametocytes up to 6 weeks. Potential applications of the above techniques for studying the ecology, evolution, and epidemiology of malaria transmission are discussed.


Asunto(s)
Malaria/parasitología , Plasmodium chabaudi/aislamiento & purificación , ARN Protozoario/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Animales , ADN Protozoario/sangre , ADN Protozoario/aislamiento & purificación , Femenino , Malaria/transmisión , Ratones , Ratones Endogámicos , Plasmodium chabaudi/genética , Reacción en Cadena de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa/normas , Proteínas Protozoarias/genética , ARN Mensajero/sangre , ARN Mensajero/aislamiento & purificación , ARN Protozoario/sangre , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/normas , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA