Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 529
Filtrar
Más filtros

Intervalo de año de publicación
1.
Environ Manage ; 73(2): 408-424, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37537396

RESUMEN

This study investigated the adsorption performance of biochar produced from different types of urban biowaste material viz., sugarcane bagasse (SB), brinjal stem (BS), and citrus peel (CP) for removal of heavy metal ions (Pb, Cu, Cr, and Cd) from aqueous solution. The effects of biowaste material, dosage of biochar, solution pH, and initial concentration of heavy metal ions and isotherm models were performed to understand the possible adsorption mechanisms. The results showed that the biochar derived from BS and SB removes Cu (99.94%), Cr (99.57%), and Cd (99.77%) whereas biochar derived from CP removes Pb (99.59%) and Cu (99.90%) more efficiently from the aqueous solution. Biochar derived from BS showed maximum adsorption capacity for Cu (246.31 mg g-1), Pb (183.15 mg g-1), and Cr (71.89 mg g-1) while the biochar derived from CP showed highest for Cd (15.46 mg g-1). Moreover, biochar derived from BS and SB has more polar functional groups and less hydrophobicity than the biochar derived from CP. This study reveals that solution pH and biochar doses play a major role in removal of heavy metal ions from aqueous solution. The results of Langmuir model fitted well for Pb and Cu while the Freundlich model for Cr and Cd. Our study concludes that the biochar derived from different biowaste materials adsorbs heavy metal ions majorly through surface complexation and precipitation processes. The results of this study will be very useful in selecting the effective urban biowaste material for making biochar for heavy metal removal from the aqueous environment.


Asunto(s)
Metales Pesados , Saccharum , Contaminantes Químicos del Agua , Cadmio/análisis , Celulosa , Adsorción , Plomo , Contaminantes Químicos del Agua/análisis , Carbón Orgánico , Agua , Cinética
2.
Int J Mol Sci ; 24(4)2023 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-36835104

RESUMEN

Herein, we describe the synthesis and evaluation of anti-inflammatory activities of new curcumin derivatives. The thirteen curcumin derivatives were synthesized by Steglich esterification on one or both of the phenolic rings of curcumin with the aim of providing improved anti-inflammatory activity. Monofunctionalized compounds showed better bioactivity than the difunctionalized derivatives in terms of inhibiting IL-6 production, and known compound 2 presented the highest activity. Additionally, this compound showed strong activity against PGE2. Structure-activity relationship studies were carried out for both IL-6 and PGE2, and it was found that the activity of this series of compounds increases when a free hydroxyl group or aromatic ligands are present on the curcumin ring and a linker moiety is absent. Compound 2 remained the highest activity in modulating IL-6 production and showed strong activity against PGE2 synthesis.


Asunto(s)
Antiinflamatorios , Curcumina , Polifenoles , Antiinflamatorios/química , Antiinflamatorios/farmacología , Curcumina/análogos & derivados , Curcumina/farmacología , Interleucina-6 , Polifenoles/química , Relación Estructura-Actividad
3.
Molecules ; 28(23)2023 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-38067518

RESUMEN

Tetrahydrocurcumin, the most abundant curcumin transformation product in biological systems, can potentially be a new alternative therapeutic agent with improved anti-inflammatory activity and higher bioavailability than curcumin. In this article, we describe the synthesis and evaluation of the anti-inflammatory activities of tetrahydrocurcumin derivatives. Eleven tetrahydrocurcumin derivatives were synthesized via Steglich esterification on both sides of the phenolic rings of tetrahydrocurcumin with the aim of improving the anti-inflammatory activity of this compound. We showed that tetrahydrocurcumin (2) inhibited TNF-α and IL-6 production but not PGE2 production. Three tetrahydrocurcumin derivatives inhibited TNF-α production, five inhibited IL-6 production, and three inhibited PGE2 production. The structure-activity relationship analysis suggested that two factors could contribute to the biological activities of these compounds: the presence or absence of planarity and their structural differences. Among the tetrahydrocurcumin derivatives, cyclic compound 13 was the most active in terms of TNF-α production, showing even better activity than tetrahydrocurcumin. Acyclic compound 11 was the most effective in terms of IL-6 production and retained the same effect as tetrahydrocurcumin. Moreover, acyclic compound 12 was the most active in terms of PGE2 production, displaying better inhibition than tetrahydrocurcumin. A 3D-QSAR analysis suggested that the anti-inflammatory activities of tetrahydrocurcumin derivatives could be increased by adding bulky groups at the ends of compounds 2, 11, and 12.


Asunto(s)
Curcumina , Curcumina/química , Factor de Necrosis Tumoral alfa , Interleucina-6 , Antiinflamatorios/farmacología , Antiinflamatorios/química , Relación Estructura-Actividad
4.
Environ Monit Assess ; 195(7): 876, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37351715

RESUMEN

Soil CO2 efflux (Fsoil) is a significant contributor of labile CO2 to the atmosphere. The Himalayas, a global climate hotspot, condense several climate zones on account of their elevational gradients, thus, creating an opportunity to investigate the Fsoil trends in different climate zones. Presently, the studies in the Indian Himalayan region are localized to a particular forest type, climate zone, or area of interest, such as seasonal variation. We used a portable infrared gas analyzer to investigate the Fsoil rates in Himalayan tropical to alpine scrub forest along a 3100-m elevational gradient. Several study parameters such as seasons, forest types, tree species identity, age of trees, distance from tree base, elevation, climatic factors, and soil physico-chemical and enzymatic parameters were investigated to infer their impact on Fsoil regulation. Our results indicate the warm and wet rainy season Fsoil rates to be 3.8 times higher than the cold and relatively dry winter season. The tropical forest types showed up to 11 times higher Fsoil rates than the alpine scrub forest. The temperate Himalayan blue pine and tropical dipterocarp sal showed significant Fsoil rates, while the alpine Rhododendron shrubs the least. Temperature and moisture together regulate the rainy season Fsoil maxima. Spatially, Fsoil rates decreased with distance from the tree base (ρ = - 0.301; p < 0.0001). Nepalese alder showed a significant positive increase in Fsoil with stem girth (R2 = 0.7771; p = 0.048). Species richness (r, 0.81) and diversity (r, 0.77) were significantly associated with Fsoil, while elevation and major edaphic properties showed a negative association. Surface litter inclusion presented an elevation-modulated impact. Temperature sensitivity was exorbitantly higher in the sub-tropical pine (Q10, 11.80) and the alpine scrub (Q10, 9.08) forests. We conclude that the rise in atmospheric temperature and the reduction in stand density could enhance the Fsoil rates on account of increased temperature sensitivity.


Asunto(s)
Dióxido de Carbono , Pinus , Suelo/química , Monitoreo del Ambiente , Bosques , Árboles , India
5.
Environ Monit Assess ; 195(6): 715, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37221436

RESUMEN

Climate change impact on the habitat distribution of umbrella species presents a critical threat to the entire regional ecosystem. This is further perilous if the species is economically important. Sal (Shorea robusta C.F. Gaertn.), a climax forest forming Central Himalayan tree species, is one of the most valuable timber species and provides several ecological services. Sal forests are under threat due to over-exploitation, habitat destruction, and climate change. Sal's poor natural regeneration and its unimodal density-diameter distribution in the region illustrate the peril to its habitat. We, modelled the current as well as future distribution of suitable sal habitats under different climate scenarios using 179 sal occurrence points and 8 bioclimatic environmental variables (non-collinear). The CMIP5-based RCP4.5 and CMIP6-based SSP245 climate models under 2041-2060 and 2061-2080 periods were used to predict the impact of climate change on sal's future potential distribution area. The niche model results predict the mean annual temperature and precipitation seasonality as the most influential sal habitat governing variables in the region. The current high suitability region for sal was 4.36% of the total geographic area, which shows a drastic decline to 1.31% and 0.07% under SSP245 for 2041-60 and 2061-80, respectively. The RCP-based models predicted more severe impact than SSP; however, both RCP and SSP models showed complete loss of high suitability regions and overall shift of species northwards in the Uttarakhand state. We could identify the current and future suitable habitats for conserving sal population through assisted regeneration and management of other regional issues.


Asunto(s)
Dipterocarpaceae , Ecosistema , Modelos Climáticos , Monitoreo del Ambiente , Cloruro de Sodio , Sales (Química)
6.
Niger J Clin Pract ; 26(5): 625-629, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37357480

RESUMEN

Background: Essential oils (EOs) have a considerable amount of therapeutic and preventive effect in treating dental diseases due to their wider potential as antibacterial and anti-inflammatory agents. EOs like virgin coconut oil, eucalyptus oil, peppermint oil thyme oil, and clove oil, when used in combination, may further have enhanced antimicrobial effects. However, limited information exists on the synergistic effect of these oils when used in combination, especially on the primary periodontal pathogen Porphyromonas gingivalis. Aim: The current study aims to compare the antimicrobial efficacy of commercially available EO on the periodontal pathogen, P. gingivalis, in comparison to chlorhexidine (CHX). Materials and Methods: Antimicrobial efficacy of EO and CHX was assessed at various concentrations against the periodontal pathogen P. gingivalis, by evaluating the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Results: P. gingivalis was seen to be sensitive at a MIC of 100 µg/ml and 50 µg/ml concentration of the EO, which is regarded as the MIC of EO against P. gingivalis and CHX effectively inhibited microbial growth at 0.4 µg/ml. Conclusion: A combination of EOs possesses a potent antibacterial activity against P. gingivalis, and the antibacterial efficacy increases with increasing concentration of EOs.


Asunto(s)
Antiinfecciosos , Aceites Volátiles , Humanos , Clorhexidina/farmacología , Aceites Volátiles/farmacología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
7.
Proc Natl Acad Sci U S A ; 116(10): 4696-4705, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30770445

RESUMEN

Genome damage and their defective repair have been etiologically linked to degenerating neurons in many subtypes of amyotrophic lateral sclerosis (ALS) patients; however, the specific mechanisms remain enigmatic. The majority of sporadic ALS patients feature abnormalities in the transactivation response DNA-binding protein of 43 kDa (TDP-43), whose nucleo-cytoplasmic mislocalization is characteristically observed in spinal motor neurons. While emerging evidence suggests involvement of other RNA/DNA binding proteins, like FUS in DNA damage response (DDR), the role of TDP-43 in DDR has not been investigated. Here, we report that TDP-43 is a critical component of the nonhomologous end joining (NHEJ)-mediated DNA double-strand break (DSB) repair pathway. TDP-43 is rapidly recruited at DSB sites to stably interact with DDR and NHEJ factors, specifically acting as a scaffold for the recruitment of break-sealing XRCC4-DNA ligase 4 complex at DSB sites in induced pluripotent stem cell-derived motor neurons. shRNA or CRISPR/Cas9-mediated conditional depletion of TDP-43 markedly increases accumulation of genomic DSBs by impairing NHEJ repair, and thereby, sensitizing neurons to DSB stress. Finally, TDP-43 pathology strongly correlates with DSB repair defects, and damage accumulation in the neuronal genomes of sporadic ALS patients and in Caenorhabditis elegans mutant with TDP-1 loss-of-function. Our findings thus link TDP-43 pathology to impaired DSB repair and persistent DDR signaling in motor neuron disease, and suggest that DSB repair-targeted therapies may ameliorate TDP-43 toxicity-induced genome instability in motor neuron disease.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/genética , Humanos , Neuronas Motoras/metabolismo , Unión Proteica , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
8.
Hum Mol Genet ; 28(15): 2459-2476, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31067307

RESUMEN

Dominant mutations in the RNA/DNA-binding protein TDP-43 have been linked to amyotrophic lateral sclerosis (ALS). Here, we screened genomic DNA extracted from spinal cord specimens of sporadic ALS patients for mutations in the TARDBP gene and identified a patient specimen with previously reported Q331K mutation. The patient spinal cord tissue with Q331K mutation showed accumulation of higher levels of DNA strand breaks and the DNA double-strand break (DSB) marker γH2AX, compared to age-matched controls, suggesting a role of the Q331K mutation in genome-damage accumulation. Using conditional SH-SY5Y lines ectopically expressing wild-type (WT) or Q331K-mutant TDP-43, we confirmed the increased cytosolic sequestration of the poly-ubiquitinated and aggregated form of mutant TDP-43, which correlated with increased genomic DNA strand breaks, activation of the DNA damage response factors phospho-ataxia-telangiectasia mutated (ATM), phospho-53BP1, γH2AX and neuronal apoptosis. We recently reported the involvement of WT TDP-43 in non-homologous end joining (NHEJ)-mediated DSB repair, where it acts as a scaffold for the recruitment of XRCC4-DNA ligase 4 complex. Here, the mutant TDP-43, due to its reduced interaction and enhanced cytosolic mislocalization, prevented the nuclear translocation of XRCC4-DNA ligase 4. Consistently, the mutant cells showed significantly reduced DNA strand break sealing activity and were sensitized to DNA-damaging drugs. In addition, the mutant cells showed elevated levels of reactive oxygen species, suggesting both dominant negative and loss-of-function effects of the mutation. Together, our study uncovered an association of sporadic Q331K mutation with persistent genome damage accumulation due to both damage induction and repair defects.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , ADN Ligasa (ATP)/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Mutación , Esclerosis Amiotrófica Lateral/metabolismo , Apoptosis/genética , Línea Celular , ADN/metabolismo , Roturas del ADN de Doble Cadena , ADN Ligasa (ATP)/genética , Reparación del ADN , Humanos , Neuronas/metabolismo , Polimorfismo de Nucleótido Simple , Proteínas de Unión al ARN/metabolismo , Médula Espinal/metabolismo , Translocación Genética
9.
Int Ophthalmol ; 41(3): 1141-1147, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33389366

RESUMEN

AIM: The current world has changed in all shapes since the emergence of the novel coronavirus (nCoV-2) also known as COVID-19. Among the extra-pulmonary manifestations of nCoV-2, ophthalmic symptoms have less been systematically studied. The so far existing body of evidence indicates that nCoV-2 has the potential to affect both anterior and posterior chambers of the eye. Albeit, the exact mechanisms which underlie ophthalmic manifestations of nCoV-2 are yet to be elucidated. METHODS: The present brief review is an attempt to put together and highlight the significant yet limited number of studies which have spotlighted ophthalmic issues in nCoV-2 patients using a systematic literature search strategy. RESULTS: All case series or reports (including both published and preprint articles) which described ocular manifestations of patients with COVID-19 and/or documented testing of SARS-COV-2 in ocular secretions via various sampling or detection methods were sought to be included. CONCLUSION: The ophthalmic presentations in SARS-COV-2 are often found to be salient. Raising awareness in this respect may help defining evidencebased protective measures in today's practice of ophthalmology and allied disciplines.


Asunto(s)
COVID-19/diagnóstico , Infecciones Virales del Ojo/diagnóstico , SARS-CoV-2/aislamiento & purificación , COVID-19/virología , Infecciones Virales del Ojo/virología , Humanos
10.
Nanotechnology ; 31(38): 385701, 2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32480395

RESUMEN

Narrow bandgap (<0.5 eV) colloidal semiconductor nanocrystals (e.g. mercury chalcogenides) provide practical platforms for next generation short wave infrared, mid wave infrared and long wave infrared optoelectronic devices. Until now, most of the efforts in the field of infrared active nanocrystals have been taken on synthesizing nanocrystals, determining quantum states and building different geometries for optoelectronic devices. However, studies on interface trap states in the devices made from these narrow band gap nanocrystals are mostly unexplored. Herein, we investigate the defects or traps in these nanocrystals-embedded devices, which will be critical for improving their optoelectronic performance. In this article, we fabricate HgTe nanocrystals/TiO2 based photovoltaic devices and used capacitance-voltage (C-V) and deep level transient spectroscopy (DLTS) to investigate and obtain quantitative information on deep level trap states. Interestingly, frequency dependent C-V measurements show two peaks in the capacitance at lower frequency (<40 kHz), which is attributed to the presence of trap states. However, at high frequency the presence of a weak hump-like structure almost at the center of above two peaks validate the role of interface traps. DLTS studies show that traps at the interface of HgTe nanocrystals/TiO2 acts as recombination centers having activation energies of 0.27, 0.4 and 0.45 eV with corresponding trap densities of 1.4 [Formula: see text], 1.[Formula: see text] and 1.[Formula: see text] and estimated capture cross-sections of 6.3 [Formula: see text], 7.5 [Formula: see text] and 3.7 [Formula: see text], respectively. In this work, DLTS has revealed the existence of interface trap states and the frequency dependent capacitance measurements corroborate the effect of charge storage on the heterostructures built from these nanocrystals that helps in the development of futuristic devices.

11.
Int J Neurosci ; 130(8): 841-851, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31858846

RESUMEN

Objective: The past few decades of research in language processing provides empirical data on the dimensions of the brain-language relationship. The methodologies used to study language processing have evidenced an immense advancement over the years, tracking real-time processing events with millisecond precision. Event-related potentials is one such method which assists to visualize the neural mechanisms that underlie language processing. Different electrophysiological components mark different components of language depending on their structural and functional aspects. Since research on language processing is expanding its boundaries, the neural mechanisms for processing syntax components have been the focus of recent investigations across the languages of the world. The present review article aims to discuss the findings of studies on syntax processing besides highlighting the functional significance of P600, the electrophysiological marker of syntax processing.Methods: Electronic databases such as Pubmed, Science Direct, Research gate, PLOS, Directory of Open Access Journals were searched for relavant articles. The review process followed PRISMA guidelines for screening, identification, and selection of articles.Results: The results of the review elucidate the need for evaluating the finer details of syntax, including morpho-syntax concerning specific language structures. Studies across the languages of the world exemplify the uniqueness in the structure of different languages that may provide varied perspectives on the universality in syntax processing.Conclusion: The present review contributes a new dimension towards understanding the nature of syntax processing with respect to language specificity.


Asunto(s)
Encéfalo/fisiología , Potenciales Evocados/fisiología , Psicolingüística , Humanos
12.
BMC Cardiovasc Disord ; 19(1): 169, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31311496

RESUMEN

BACKGROUND: Anthracyclines are highly effective anticancer medication prescribed for the treatment of breast cancer. Nevertheless, the use of anthracyclines as chemotherapeutic agents involves a risk for development of cardiac toxicity which may cause restrictive and dilated cardiomyopathy. Currently, genetic predisposition is not considered as a risk factor for cardiotoxicity associated to the use of anthracyclines. CASE PRESENTATION: We report the case of a 37-years old Panamanian female patient diagnosed with breast cancer who developed clinical signs of severe heart failure after treatment with doxorubicin. A diagnosis of anthracycline induced cardiomyopathy was made and treatment was initiated accordingly. A whole exome sequencing study performed to the patient showed the presence of a missense mutation in LMNA gene, which codifies for lamin A/C. Our results points to a correlation between the LMNA variant and the anthracycline cardiotoxicity developed by the woman. Improvement of the clinical symptoms and the left ventricle ejection fraction was observed after proper treatment. CONCLUSIONS: This case report suggests for the first time a potential genetic predisposition for anthracyclines induced cardiomyopathy in patients with mutations in LMNA gene. Perhaps chemotherapies accelerate or deliver the "second-hit" in the development of DCM in patients with genetic mutations. More data is needed to understand the contribution of LMNA variants that predispose to DCM in patients receiving cardiotoxic therapies.


Asunto(s)
Antibióticos Antineoplásicos/efectos adversos , Neoplasias de la Mama/tratamiento farmacológico , Carcinoma Ductal de Mama/tratamiento farmacológico , Cardiomiopatía Dilatada/inducido químicamente , Cardiomiopatía Dilatada/genética , Doxorrubicina/efectos adversos , Lamina Tipo A/genética , Mutación Missense , Variantes Farmacogenómicas , Antagonistas Adrenérgicos beta/uso terapéutico , Adulto , Antihipertensivos/uso terapéutico , Cardiomiopatía Dilatada/diagnóstico por imagen , Cardiomiopatía Dilatada/tratamiento farmacológico , Cardiotoxicidad , Diuréticos/uso terapéutico , Femenino , Predisposición Genética a la Enfermedad , Humanos , Factores de Riesgo , Resultado del Tratamiento
13.
Int J Mol Sci ; 20(22)2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31703296

RESUMEN

Alzheimer's disease (AD) is the most devastating neurodegenerative disorder that affects the aging population worldwide. Endogenous and exogenous factors are involved in triggering this complex and multifactorial disease, whose hallmark is Amyloid-ß (Aß), formed by cleavage of amyloid precursor protein by ß- and γ-secretase. While there is no definitive cure for AD to date, many neuroprotective natural products, such as polyphenol and carotenoid compounds, have shown promising preventive activity, as well as helping in slowing down disease progression. In this article, we focus on the chemistry as well as structure of carotenoid compounds and their neuroprotective activity against Aß aggregation using molecular docking analysis. In addition to examining the most prevalent anti-amyloidogenic carotenoid lutein, we studied cryptocapsin, astaxanthin, fucoxanthin, and the apocarotenoid bixin. Our computational structure-based drug design analysis and molecular docking simulation revealed important interactions between carotenoids and Aß via hydrogen bonding and van der Waals interactions, and shows that carotenoids are powerful anti-amyloidogenic molecules with a potential role in preventing AD, especially since most of them can cross the blood-brain barrier and are considered nutraceutical compounds. Our studies thus illuminate mechanistic insights on how carotenoids inhibit Aß aggregation. The potential role of carotenoids as novel therapeutic molecules in treating AD and other neurodegenerative disorders are discussed.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Carotenoides , Simulación del Acoplamiento Molecular , Fármacos Neuroprotectores , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Carotenoides/química , Carotenoides/uso terapéutico , Humanos , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/uso terapéutico
14.
Mol Pharm ; 14(11): 3866-3878, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-28972765

RESUMEN

Pulmonary administration of polymer drug conjugates is of great potential clinical significance for treating lung cancer as such regimen significantly increases local drug concentrations while decreases systemic and local side effects. In this work, we demonstrate that nanoparticles prepared with methoxypoly(ethylene glycol) (mPEG)-doxorubicin (DOX) conjugates (mPEG-DOX) that have a pH-sensitive imine bond (Schiff base) can at the same time work as efficient carriers for DOX to kill cancer cells and also as a strategy to directly formulate nanoparticles in propellant-based inhalers. Nanoparticles prepared by precipitation in water had a diameter in the range between 100 and 120 nm. We investigated the effects of molecular weight (MW) of mPEG (1K, 2K, and 5K Da) on the in vitro release kinetics, cellular internalization, and cytotoxicity on in vitro model of lung adenocarcinoma and aerosol characters. It is observed that the DOX released from mPEG-DOX nanoparticles was significantly accelerated in acidic environment, pH 5.5 (endosomal/lysosomal pH) in comparison with pH 7.4 (physiological pH), as designed. Release of DOX from mPEG1K-DOX nanoparticles was significantly greater than those from mPEG2K and mPEG5K counterparts. In vitro cytotoxicity of nanoparticles followed the sequence of mPEG1K-DOX > free DOX > mPEG2K-DOX ≫ mPEG5K-DOX, a trend closely following their rate and extent of cellular internalization. mPEG-DOX nanoparticles with mPEG1K and mPEG2K were directly dispersed in hydrofluoroalkane (HFA), while a trace of ethanol was required to disperse mPEG5K-DOX nanoparticles in HFA. These pMDI formulations with high physical stability in HFAs display superior aerosol characteristics conducive to deep lung deposition. The fine particle fractions of these formulations ranged from 40-60%, higher than those of commercial products. Such formulations prepared from nanoparticles of pH-sensitive PEG-drug conjugates may also be envisioned to be extended to formulate other hydrophobic drugs for local delivery with propellant-based inhalers to other pulmonary disorders, thus broadening the impact of the proposed strategy.


Asunto(s)
Adenocarcinoma/metabolismo , Doxorrubicina/química , Sistemas de Liberación de Medicamentos/métodos , Neoplasias Pulmonares/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Nebulizadores y Vaporizadores , Adenocarcinoma del Pulmón , Línea Celular Tumoral , Portadores de Fármacos/química , Humanos , Concentración de Iones de Hidrógeno , Polietilenglicoles/química
16.
Appl Opt ; 55(4): 817-24, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26836085

RESUMEN

This paper reports the investigation of thermal decomposition mechanisms and evaluation of thermally released NO2 from two newly synthesized high-energy materials named 1-(4-nitrophenyl)-1H-1,2,3-triazole (S8) and 2,6-bis ((4-(nitromethyl)-1H-1,2,3-triazol-1-yl)methyl) pyridine (S9) using time-resolved pulsed photoacoustic (PA) pyrolysis technique. The PA spectra were recorded between the 30°C and 350°C range and by varying the pressure of compounds vapor using 532 nm wavelength of pulse duration 7 ns at 10 Hz repetition rate obtained from Q-switched Nd:YAG laser pulses. The PA results were cross verified with thermogravimetric-differential thermal analysis data. The quality factor "&=&Q"&=& of the PA cavity was measured to test the thermal stability of the compound. In addition, we have ascertained the molecular density, absorption cross sections of high-energy materials vapor in terms of NO2. The corresponding values are of the order of 0.1-1.2×10(20) cm-3 and 0.5-6 kilobarn, respectively. These results once again confirm the close agreement between the radiative and nonradiative transitions data and established the role of NO2 during the thermal decomposition process.

17.
Kathmandu Univ Med J (KUMJ) ; 14(53): 31-35, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27892438

RESUMEN

Background Acute bronchiolitis is common cause of hospitalization in infants and young children. There are widespread variations in the diagnosis and management. Despite the use of bronchodilators for decades, there is lack of consensus for the benefit of one above another. Objective To compare initial response of nebulized adrenaline and salbutamol. Method Children aged two months to two years admitted with acute bronchiolitis in the department of Paediatrics of Manipal teaching hospital, Pokhara, Nepal, from 1st March 2014 to 28th February 2015 were enrolled. Patients fulfilling inclusion criteria received either adrenaline or salbutamol nebulization. Data were collected in a predesigned proforma. Respiratory distress assessment instrument (RDAI) scores were considered primary outcome measure and respiratory rate at 48 hours, duration of hospital stay, requirement of supplemental oxygen and intravenous fluid were considered secondary outcome measure. Result A total of 40 patients were enrolled in each study group. Mean RDAI scores at admission was in 9.75 with (CI- 9.01, 10.49) in adrenaline and 9.77 (CI- 9.05, 10.50) in salbutamol group. There was gradual decline in mean RDAI scores in both the groups over 48 hours to 4.15 (CI- 3.57,4.73) and 4.13 (CI- 3.69,4.56) in adrenaline and salbutamol group respectively. Hospital stay was 5.32 days in adrenaline and 5.68 days in salbutamol group. Patients nebulized with adrenaline required oxygen for 33.30 hours compared with 36.45 hours in salbutamol. Intravenous fluid duration was also less in adrenaline group compared to salbutamol group (33.15 vs 37.80 hours). Conclusion Patients of acute bronchiolitis nebulized with either salbutamol or adrenaline experienced similar decline in RDAI scores in the first 48 hours. Duration of supplementary oxygen and intravenous fluid was less in adrenaline group compared with salbutamol group.


Asunto(s)
Albuterol/uso terapéutico , Bronquiolitis/tratamiento farmacológico , Broncodilatadores/uso terapéutico , Epinefrina/uso terapéutico , Enfermedad Aguda , Albuterol/administración & dosificación , Broncodilatadores/administración & dosificación , Método Doble Ciego , Epinefrina/administración & dosificación , Femenino , Humanos , Lactante , Tiempo de Internación/estadística & datos numéricos , Masculino , Nepal
18.
Bioorg Med Chem Lett ; 25(19): 4232-8, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26296475

RESUMEN

Antimicrobial agents 4a-g and 5a-g with very good potency were synthesized with 100% ee from phenylpropanolamine (norephedrine) by BF3 catalyzed three components one pot Mannich reaction in good yields. Obtained compounds were characterized using spectral techniques. Antimicrobial study of these compounds revealed a good to very high potential activity against tested microbes when compared to standard antimicrobial drugs streptomycin and ketoconazole. These synthesized compounds exhibited significant minimum inhibitory concentration (MIC) values against Gram positive and Gram negative bacteria. Amongst compound 4b, 4c, 4d, 4e, 5a, and 5e exhibited very high potent MIC values against tested twelve bacteria and three fungi when compared to control. When subjected to molecular docking, in silico studies revealed significant binding energies ranging from -7.06 to -8.90 kcal/mol for all obtained compounds towards target receptor DNA topoisomerase IV and amongst compounds 4b and 4d have shown maximum binding energies 8.70 and 8.90 kcal/mol, respectively.


Asunto(s)
Antibacterianos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Bases de Mannich/química , Bases de Mannich/farmacología , Simulación del Acoplamiento Molecular , Fenilpropanolamina/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Boranos , Catálisis , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Fenilpropanolamina/síntesis química , Fenilpropanolamina/química , Relación Estructura-Actividad
19.
Phys Chem Chem Phys ; 17(41): 27579-87, 2015 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-26426345

RESUMEN

Naturally formed CdTe/CdS core/shell quantum dot (QD) structures in the presence of surface stabilizing agents have been synthesized by a hydrothermal method. Size and temperature dependent photoluminescence (PL) spectra have been investigated to understand the exciton-phonon interaction, and radiative and nonradiative relaxation of carriers in these QDs. The PL of these aqueous CdTe QDs (3.0-4.8 nm) has been studied in the temperature range 15-300 K. The strength of the exciton-LO-phonon coupling, as reflected in the Huang-Rhys parameter 'S' is found to increase from 1.13 to 1.51 with the QD size varying from 4.8 to 3.0 nm. The PL linewidth (FWHM) increases with increase in temperature and is found to have a maximum in the case of QDs of 3.0 nm in size, where the exciton-acoustic phonon coupling coefficient is enhanced to 51 µeV K(-1), compared to the bulk value of 0.72 µeV K(-1). To understand the nonradiative processes, which affect the relaxation of carriers, the integrated PL intensity is observed as a function of temperature. The integrated PL intensity remains constant until 50 K for relatively large QDs (3.9-4.8 nm) beyond which a thermally activated process takes over. Below 150 K, a small activation energy, 45-19 meV, is found to be responsible for the quenching of the PL. Above 150 K, the thermal escape from the dot assisted by scattering with multiple longitudinal optical (LO) phonons is the main mechanism for the fast quenching of the PL. Besides this high temperature quenching, interestingly for relatively smaller size QDs (3.4-3.0 nm), the PL intensity enhances as the temperature increases up to 90-130 K, which is attributed to the emission of carriers from interface/trap states having an activation energy in the range of 6-13 meV.

20.
Ecotoxicol Environ Saf ; 114: 257-62, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24836933

RESUMEN

Fly ash (FA), a byproduct of coal combustion in thermal power plants, has been considered as a problematic solid waste and its safe disposal is a cause of concern. Several studies proposed that FA can be used as a soil additive; however its effect on microbial response, soil enzymatic activities and heavy metal accumulation in soil and grain of rice (cv. Naveen) to fly ash (FA) application was studied in a pot experiment during dry season 2011 in an Inceptisol. Fly ash was applied at a rate of zero per cent (FS), five per cent (FA5), ten per cent (FA10), twenty per cent (FA20), 40 per cent (FA40) and 100 per cent (FA100) on soil volume basis with nitrogen (N), phosphorus (P) and potassium (K) (40:20:20mg N:P:Kkg(-1) soil) with six replications. Heavy metals contents in soil and plant parts were analysed after harvest of crop. On the other hand, microbial population and soil enzymatic activities were analysed at panicle initiation stage (PI, 65 days after transplanting) of rice. There was no significant change in the concentration of zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), cadmium (Cd) and chromium (Cr) with application of fly ash up to FA10. However, at FA100 there was significant increase of all metals concentration in soil than other treatments. Microorganisms differed in their response to the rate of FA application. Population of both fungi and actinomycetes decreased with the application of fly ash, while aerobic heterotrophic bacterial population did not change significantly up to FA40. On the other hand, total microbial activity measured in terms of Fluorescein diacetate (FDA) assay, and denitrifiers showed an increased trend up to FA40. However, activities of both alkaline and acid phosphatase were decreased with the application of FA. Application of FA at lower levels (ten to twenty per cent on soil volume basis) in soil enhanced micronutrients content, microbial activities and crop yield.


Asunto(s)
Ceniza del Carbón/farmacología , Metales Pesados/análisis , Oryza/química , Microbiología del Suelo , Suelo/química , Actinobacteria/aislamiento & purificación , Bacterias/aislamiento & purificación , Hongos/aislamiento & purificación , Nitrógeno/metabolismo , Residuos Sólidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA