Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
EMBO J ; 37(15)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29903919

RESUMEN

Glioblastoma is the most common and aggressive brain tumor, with a subpopulation of stem-like cells thought to mediate its recurring behavior and therapeutic resistance. The epithelial-mesenchymal transition (EMT) inducing factor Zeb1 was linked to tumor initiation, invasion, and resistance to therapy in glioblastoma, but how Zeb1 functions at molecular level and what genes it regulates remain poorly understood. Contrary to the common view that EMT factors act as transcriptional repressors, here we show that genome-wide binding of Zeb1 associates with both activation and repression of gene expression in glioblastoma stem-like cells. Transcriptional repression requires direct DNA binding of Zeb1, while indirect recruitment to regulatory regions by the Wnt pathway effector Lef1 results in gene activation, independently of Wnt signaling. Amongst glioblastoma genes activated by Zeb1 are predicted mediators of tumor cell migration and invasion, including the guanine nucleotide exchange factor Prex1, whose elevated expression is predictive of shorter glioblastoma patient survival. Prex1 promotes invasiveness of glioblastoma cells in vivo highlighting the importance of Zeb1/Lef1 gene regulatory mechanisms in gliomagenesis.


Asunto(s)
Glioblastoma/genética , Glioblastoma/patología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factor de Unión 1 al Potenciador Linfoide/genética , Vía de Señalización Wnt/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Movimiento Celular/genética , Proteínas de Unión al ADN/genética , Transición Epitelial-Mesenquimal/genética , Glioblastoma/mortalidad , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Invasividad Neoplásica/genética , Transcripción Genética/genética , Activación Transcripcional/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
2.
Diabetes Metab Res Rev ; 29(4): 296-307, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23315923

RESUMEN

BACKGROUND: Loss of ß-cell function hastens deterioration of metabolic control in type 2 diabetes patients. Besides amyloid deposit and glucolipotoxicity, advanced glycation end products (AGEs) acting through their receptors (RAGE) seem to contribute to this process by promoting islet apoptosis. In order to investigate the role of AGEs in ß-cell deterioration, we evaluated the temporal and dose effects of AGE compounds on apoptosis rate, reactive oxygen species generation and expression of pro-apoptotic and anti-apoptotic genes in cultured islets. METHODS: Rat pancreatic islets were exposed or not for 24, 48, 72 and 96 h to albumin modified by glycoaldehyde. Apoptosis, reactive oxygen species and superoxide content and NADPH oxidase activity were evaluated as well as RNA expression of the genes Ager (codes for RAGE), Bax, Bcl2 and Nfkb1. RESULTS: In 24 and 48 h, glycoaldehyde elicited a decrease in apoptosis rate in comparison with the control condition concomitantly with a reduction in Bax/Bcl2 RNA ratio and in Nfkb1 RNA expression. In contrast, after 72 and 96 h, glycoaldehyde promoted an increase in apoptosis rate concomitantly with an increase in Bax/Bcl2 RNA ratio and in Nfkb1 RNA expression. In 24 h, glycoaldehyde elicited a decrease in the islet content of reactive oxygen species, whereas after 48 and 72 h, it promoted an opposite effect, increasing superoxide generation. The NADPH oxidase inhibitor VAS2870 attenuated superoxide production, implicating NADPH oxidase as an important source of reactive oxygen species in islets exposed to AGEs. CONCLUSIONS: Albumin modified by glycoaldehyde exerted a dual effect in cultured pancreatic islets, being protective against apoptosis after short exposure but pro-apoptotic after prolonged exposure.


Asunto(s)
Apoptosis , Productos Finales de Glicación Avanzada/metabolismo , Islotes Pancreáticos/patología , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxidos/metabolismo , Albúminas/metabolismo , Animales , Western Blotting , Proliferación Celular , Células Cultivadas , Glucosa/metabolismo , Productos Finales de Glicación Avanzada/genética , Islotes Pancreáticos/metabolismo , Luminiscencia , Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Subunidad p50 de NF-kappa B/genética , Subunidad p50 de NF-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Mensajero/genética , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
3.
Dev Cell ; 13(4): 539-53, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17925229

RESUMEN

Mutants in the actin nucleators Cappuccino and Spire disrupt the polarized microtubule network in the Drosophila oocyte that defines the anterior-posterior axis, suggesting that microtubule organization depends on actin. Here, we show that Cappuccino and Spire organize an isotropic mesh of actin filaments in the oocyte cytoplasm. capu and spire mutants lack this mesh, whereas overexpressed truncated Cappuccino stabilizes the mesh in the presence of Latrunculin A and partially rescues spire mutants. Spire overexpression cannot rescue capu mutants, but prevents actin mesh disassembly at stage 10B and blocks late cytoplasmic streaming. We also show that the actin mesh regulates microtubules indirectly, by inhibiting kinesin-dependent cytoplasmic flows. Thus, the Capu pathway controls alternative states of the oocyte cytoplasm: when active, it assembles an actin mesh that suppresses kinesin motility to maintain a polarized microtubule cytoskeleton. When inactive, unrestrained kinesin movement generates flows that wash microtubules to the cortex.


Asunto(s)
Actinas/fisiología , Proteínas de Drosophila/metabolismo , Drosophila/ultraestructura , Proteínas de Microfilamentos/metabolismo , Microtúbulos/fisiología , Oocitos/ultraestructura , Animales , Citoplasma/fisiología , Citoplasma/ultraestructura , Drosophila/metabolismo , Proteínas de Drosophila/genética , Femenino , Cinesinas/metabolismo , Proteínas de Microfilamentos/genética , Mutación , Oocitos/metabolismo
4.
Life Sci Alliance ; 5(12)2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36220570

RESUMEN

Adaptation to breathing is a critical step in lung function and it is crucial for organismal survival. Alveoli are the lung gas exchange units and their development, from late embryonic to early postnatal stages, requires feedbacks between multiple cell types. However, how the crosstalk between the alveolar cell types is modulated to anticipate lung adaptation to breathing is still unclear. Here, we uncovered a synchronous alternative splicing switch in multiple genes in the developing mouse lungs at the transition to birth, and we identified hnRNP A1, Cpeb4, and Elavl2/HuB as putative splicing regulators of this transition. Notably, we found that <i>Vegfa</i> switches from the <i>Vegfa</i> 164 isoform to the longer <i>Vegfa</i> 188 isoform exclusively in lung alveolar epithelial AT1 cells. Functional analysis revealed that VEGFA 188 (and not VEGFA 164) drives the specification of Car4-positive aerocytes, a subtype of alveolar endothelial cells specialized in gas exchanges. Our results reveal that the cell type-specific regulation of <i>Vegfa</i> alternative splicing just before birth modulates the epithelial-endothelial crosstalk in the developing alveoli to promote lung adaptation to breathing.


Asunto(s)
Empalme Alternativo , Células Endoteliales , Empalme Alternativo/genética , Animales , Células Endoteliales/metabolismo , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Pulmón/metabolismo , Ratones , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
5.
Front Cell Dev Biol ; 9: 642697, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33996801

RESUMEN

The spinal cord dorsal horn is a major station for integration and relay of somatosensory information and comprises both excitatory and inhibitory neuronal populations. The homeobox gene Tlx3 acts as a selector gene to control the development of late-born excitatory (dILB) neurons by specifying glutamatergic transmitter fate in dorsal spinal cord. However, since Tlx3 direct transcriptional targets remain largely unknown, it remains to be uncovered how Tlx3 functions to promote excitatory cell fate. Here we combined a genomics approach based on chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq) and expression profiling, with validation experiments in Tlx3 null embryos, to characterize the transcriptional program of Tlx3 in mouse embryonic dorsal spinal cord. We found most dILB neuron specific genes previously identified to be directly activated by Tlx3. Surprisingly, we found Tlx3 also directly represses many genes associated with the alternative inhibitory dILA neuronal fate. In both cases, direct targets include transcription factors and terminal differentiation genes, showing that Tlx3 directly controls cell identity at distinct levels. Our findings provide a molecular frame for the master regulatory role of Tlx3 in developing glutamatergic dILB neurons. In addition, they suggest a novel function for Tlx3 as direct repressor of GABAergic dILA identity, pointing to how generation of the two alternative cell fates being tightly coupled.

6.
Curr Biol ; 17(17): 1498-503, 2007 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-17716897

RESUMEN

Centrosome asymmetry plays a key role in ensuring the asymmetric division of Drosophila neural stem cells (neuroblasts [NBs]) and male germline stem cells (GSCs) [1-3]. In both cases, one centrosome is anchored close to a specific cortical region during interphase, thus defining the orientation of the spindle during the ensuing mitosis. To test whether asymmetric centrosome behavior is a general feature of stem cells, we have studied female GSCs, which divide asymmetrically, producing another GSC and a cystoblast. The cystoblast then divides and matures into an oocyte, a process in which centrosomes exhibit a series of complex behaviors proposed to play a crucial role in oogenesis [4-6]. We show that the interphase centrosome does not define spindle orientation in female GSCs and that DSas-4 mutant GSCs [7], lacking centrioles and centrosomes, invariably divide asymmetrically to produce cystoblasts that proceed normally through oogenesis-remarkably, oocyte specification, microtubule organization, and mRNA localization are all unperturbed. Mature oocytes can be fertilized, but embryos that cannot support centriole replication arrest very early in development. Thus, centrosomes are dispensable for oogenesis but essential for early embryogenesis. These results reveal that asymmetric centrosome behavior is not an essential feature of stem cell divisions.


Asunto(s)
Centriolos/fisiología , Drosophila/fisiología , Desarrollo Embrionario/fisiología , Oogénesis/fisiología , Células Madre Totipotentes/fisiología , Animales , Proteínas de Drosophila/fisiología , Femenino , Proteínas Asociadas a Microtúbulos , Microtúbulos/fisiología , Oocitos/fisiología , ARN Mensajero/metabolismo
7.
Cell Rep ; 27(4): 1090-1102.e10, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31018126

RESUMEN

Citrullination, the deimination of peptidylarginine residues into peptidylcitrulline, has been implicated in the etiology of several diseases. In multiple sclerosis, citrullination is thought to be a major driver of pathology through hypercitrullination and destabilization of myelin. As such, inhibition of citrullination has been suggested as a therapeutic strategy for MS. Here, in contrast, we show that citrullination by peptidylarginine deiminase 2 (PAD2) contributes to normal oligodendrocyte differentiation, myelination, and motor function. We identify several targets for PAD2, including myelin and chromatin-related proteins, implicating PAD2 in epigenomic regulation. Accordingly, we observe that PAD2 inhibition and its knockdown affect chromatin accessibility and prevent the upregulation of oligodendrocyte differentiation genes. Moreover, mice lacking PAD2 display motor dysfunction and a decreased number of myelinated axons in the corpus callosum. We conclude that citrullination contributes to proper oligodendrocyte lineage progression and myelination.


Asunto(s)
Citrulinación , Vaina de Mielina/metabolismo , Oligodendroglía/citología , Arginina Deiminasa Proteína-Tipo 2/fisiología , Animales , Diferenciación Celular/genética , Linaje de la Célula , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Perfilación de la Expresión Génica , Ratones , Oligodendroglía/metabolismo , Mapas de Interacción de Proteínas , Arginina Deiminasa Proteína-Tipo 2/análisis , Arginina Deiminasa Proteína-Tipo 2/metabolismo
8.
Front Immunol ; 10: 2503, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31824477

RESUMEN

Monozygotic twins provide a unique opportunity to better understand complex genetic diseases and the relative contribution of heritable factors in shaping the immune system throughout life. Common Variable Immunodeficiency Disorders (CVID) are primary antibody defects displaying wide phenotypic and genetic heterogeneity, with monogenic transmission accounting for only a minority of the cases. Here, we report a pair of monozygotic twins concordant for CVID without a family history of primary immunodeficiency. They featured a remarkably similar profile of clinical manifestations and immunological alterations at diagnosis (established at age 37) and along the subsequent 15 years of follow-up. Interestingly, whole-exome sequencing failed to identify a monogenic cause for CVID, but unraveled a combination of heterozygous variants, with a predicted deleterious impact. These variants were found in genes involved in relevant immunological pathways, such as JUN, PTPRC, TLR1, ICAM1, and JAK3. The potential for combinatorial effects translating into the observed disease phenotype is inferred from their roles in immune pathways, namely in T and B cell activation. The combination of these genetic variants is also likely to impose a significant constraint on environmental influences, resulting in a similar immunological phenotype in both twins, despite exposure to different living conditions. Overall, these cases stress the importance of integrating NGS data with clinical and immunological phenotypes at the single-cell level, as provided by multi-dimensional flow-cytometry, in order to understand the complex genetic landscape underlying the vast majority of patients with CVID, as well as those with other immunodeficiencies.


Asunto(s)
Inmunodeficiencia Variable Común/diagnóstico , Inmunodeficiencia Variable Común/etiología , Susceptibilidad a Enfermedades , Gemelos Monocigóticos , Adulto , Linfocitos B/inmunología , Linfocitos B/metabolismo , Biomarcadores , Susceptibilidad a Enfermedades/inmunología , Predisposición Genética a la Enfermedad , Humanos , Inmunofenotipificación , Masculino , Herencia Multifactorial , Linaje , Fenotipo , Polimorfismo de Nucleótido Simple , Evaluación de Síntomas , Linfocitos T/inmunología , Linfocitos T/metabolismo , Secuenciación del Exoma
9.
Elife ; 52016 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-27178982

RESUMEN

In the developing mammalian brain, differentiating neurons mature morphologically via neuronal polarity programs. Despite discovery of polarity pathways acting concurrently with differentiation, it's unclear how neurons traverse complex polarity transitions or how neuronal progenitors delay polarization during development. We report that zinc finger and homeobox transcription factor-1 (Zeb1), a master regulator of epithelial polarity, controls neuronal differentiation by transcriptionally repressing polarity genes in neuronal progenitors. Necessity-sufficiency testing and functional target screening in cerebellar granule neuron progenitors (GNPs) reveal that Zeb1 inhibits polarization and retains progenitors in their germinal zone (GZ). Zeb1 expression is elevated in the Sonic Hedgehog (SHH) medulloblastoma subgroup originating from GNPs with persistent SHH activation. Restored polarity signaling promotes differentiation and rescues GZ exit, suggesting a model for future differentiative therapies. These results reveal unexpected parallels between neuronal differentiation and mesenchymal-to-epithelial transition and suggest that active polarity inhibition contributes to altered GZ exit in pediatric brain cancers.


Asunto(s)
Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Neuronas/fisiología , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Animales , Encéfalo/embriología , Ratones , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética
10.
Cell Rep ; 17(2): 469-483, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27705795

RESUMEN

The generation of neurons from neural stem cells requires large-scale changes in gene expression that are controlled to a large extent by proneural transcription factors, such as Ascl1. While recent studies have characterized the differentiation genes activated by proneural factors, less is known on the mechanisms that suppress progenitor cell identity. Here, we show that Ascl1 induces the transcription factor MyT1 while promoting neuronal differentiation. We combined functional studies of MyT1 during neurogenesis with the characterization of its transcriptional program. MyT1 binding is associated with repression of gene transcription in neural progenitor cells. It promotes neuronal differentiation by counteracting the inhibitory activity of Notch signaling at multiple levels, targeting the Notch1 receptor and many of its downstream targets. These include regulators of the neural progenitor program, such as Hes1, Sox2, Id3, and Olig1. Thus, Ascl1 suppresses Notch signaling cell-autonomously via MyT1, coupling neuronal differentiation with repression of the progenitor fate.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Proteínas de Unión al ADN/genética , Neurogénesis/genética , Receptor Notch1/genética , Factores de Transcripción/genética , Animales , Regulación del Desarrollo de la Expresión Génica , Proteínas Inhibidoras de la Diferenciación/genética , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Factores de Transcripción SOXB1/genética , Células Madre/citología , Células Madre/metabolismo , Factor de Transcripción HES-1/genética , Vertebrados/genética , Vertebrados/crecimiento & desarrollo
11.
Cell Rep ; 10(9): 1544-1556, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25753420

RESUMEN

The proneural transcription factor Ascl1 coordinates gene expression in both proliferating and differentiating progenitors along the neuronal lineage. Here, we used a cellular model of neurogenesis to investigate how Ascl1 interacts with the chromatin landscape to regulate gene expression when promoting neuronal differentiation. We find that Ascl1 binding occurs mostly at distal enhancers and is associated with activation of gene transcription. Surprisingly, the accessibility of Ascl1 to its binding sites in neural stem/progenitor cells remains largely unchanged throughout their differentiation, as Ascl1 targets regions of both readily accessible and closed chromatin in proliferating cells. Moreover, binding of Ascl1 often precedes an increase in chromatin accessibility and the appearance of new regions of open chromatin, associated with de novo gene expression during differentiation. Our results reveal a function of Ascl1 in promoting chromatin accessibility during neurogenesis, linking the chromatin landscape at Ascl1 target regions with the temporal progression of its transcriptional program.

12.
Front Neurosci ; 8: 257, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25191221

RESUMEN

Neurons of the mammalian neocortex are produced by proliferating cells located in the ventricular zone (VZ) lining the lateral ventricles. This is a complex and sequential process, requiring precise control of cell cycle progression, fate commitment and differentiation. We have analyzed publicly available databases from mouse and human to identify candidate genes that are potentially involved in regulating early neocortical development and neurogenesis. We used a mouse in situ hybridization dataset (The Allen Institute for Brain Science) to identify 13 genes (Cdon, Celsr1, Dbi, E2f5, Eomes, Hmgn2, Neurog2, Notch1, Pcnt, Sox3, Ssrp1, Tead2, Tgif2) with high correlation of expression in the proliferating cells of the VZ of the neocortex at early stages of development (E15.5). We generated a similar human brain network using microarray and RNA-seq data (BrainSpan Atlas) and identified 407 genes with high expression in the developing human VZ and subventricular zone (SVZ) at 8-9 post-conception weeks. Seven of the human genes were also present in the mouse VZ network. The human and mouse networks were extended using available genetic and proteomic datasets through GeneMANIA. A gene ontology search of the mouse and human networks indicated that many of the genes are involved in the cell cycle, DNA replication, mitosis and transcriptional regulation. The reported involvement of Cdon, Celsr1, Dbi, Eomes, Neurog2, Notch1, Pcnt, Sox3, Tead2, and Tgif2 in neural development or diseases resulting from the disruption of neurogenesis validates these candidate genes. Taken together, our knowledge-based discovery method has validated the involvement of many genes already known to be involved in neocortical development and extended the potential number of genes by 100's, many of which are involved in functions related to cell proliferation but others of which are potential candidates for involvement in the regulation of neocortical development.

13.
Science ; 336(6084): 999-1003, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22499806

RESUMEN

The Drosophila dorsal-ventral (DV) axis is polarized when the oocyte nucleus migrates from the posterior to the anterior margin of the oocyte. Prior work suggested that dynein pulls the nucleus to the anterior side along a polarized microtubule cytoskeleton, but this mechanism has not been tested. By imaging live oocytes, we find that the nucleus migrates with a posterior indentation that correlates with its direction of movement. Furthermore, both nuclear movement and the indentation depend on microtubule polymerization from centrosomes behind the nucleus. Thus, the nucleus is not pulled to the anterior but is pushed by the force exerted by growing microtubules. Nuclear migration and DV axis formation therefore depend on centrosome positioning early in oogenesis and are independent of anterior-posterior axis formation.


Asunto(s)
Núcleo Celular/fisiología , Microtúbulos/fisiología , Oocitos/fisiología , Oogénesis , Animales , Tipificación del Cuerpo , Núcleo Celular/ultraestructura , Polaridad Celular , Centrosoma/fisiología , Drosophila , Proteínas de Drosophila/fisiología , Dineínas/fisiología , Centro Organizador de los Microtúbulos/fisiología , Centro Organizador de los Microtúbulos/ultraestructura , Microtúbulos/ultraestructura , Movimiento , Mutación , Membrana Nuclear/fisiología , Membrana Nuclear/ultraestructura , Oocitos/ultraestructura
14.
Neurosci Lett ; 466(2): 63-8, 2009 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-19545603

RESUMEN

The modification of neuronal connections in response to stimuli is believed to be the basis of long-term memory formation. It is currently accepted that local protein synthesis critically contributes to site-restricted modulation of individual synapses. Here, we summarize recent evidence implicating miRNAs in this process, leading to altered dendrite morphogenesis and synaptic plasticity. Second, we discuss findings in non-neuronal systems about how RNA-binding proteins can modulate miRNA-mRNA interactions, and how these mechanisms might apply to neurons. Finally, we review recent findings that P-bodies may be important sites for miRNA action at the synapse.


Asunto(s)
Mamíferos/anatomía & histología , MicroARNs/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Animales , Dendritas/metabolismo , Humanos , Mamíferos/fisiología , Modelos Biológicos , Neuronas/citología , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA