Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(7): 1706-1723.e24, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33761327

RESUMEN

The recently enriched genomic history of Indigenous groups in the Americas is still meager concerning continental Central America. Here, we report ten pre-Hispanic (plus two early colonial) genomes and 84 genome-wide profiles from seven groups presently living in Panama. Our analyses reveal that pre-Hispanic demographic events contributed to the extensive genetic structure currently seen in the area, which is also characterized by a distinctive Isthmo-Colombian Indigenous component. This component drives these populations on a specific variability axis and derives from the local admixture of different ancestries of northern North American origin(s). Two of these ancestries were differentially associated to Pleistocene Indigenous groups that also moved into South America, leaving heterogenous genetic footprints. An additional Pleistocene ancestry was brought by a still unsampled population of the Isthmus (UPopI) that remained restricted to the Isthmian area, expanded locally during the early Holocene, and left genomic traces up to the present day.


Asunto(s)
Indio Americano o Nativo de Alaska/genética , Arqueología , Genómica/métodos , Indio Americano o Nativo de Alaska/clasificación , ADN Mitocondrial/genética , Variación Genética , Genoma Humano , Haplotipos , Humanos , Filogenia
2.
Annu Rev Genomics Hum Genet ; 24: 277-303, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37196361

RESUMEN

Recent advancements in single-cell technologies have enabled expression quantitative trait locus (eQTL) analysis across many individuals at single-cell resolution. Compared with bulk RNA sequencing, which averages gene expression across cell types and cell states, single-cell assays capture the transcriptional states of individual cells, including fine-grained, transient, and difficult-to-isolate populations at unprecedented scale and resolution. Single-cell eQTL (sc-eQTL) mapping can identify context-dependent eQTLs that vary with cell states, including some that colocalize with disease variants identified in genome-wide association studies. By uncovering the precise contexts in which these eQTLs act, single-cell approaches can unveil previously hidden regulatory effects and pinpoint important cell states underlying molecular mechanisms of disease. Here, we present an overview of recently deployed experimental designs in sc-eQTL studies. In the process, we consider the influence of study design choices such as cohort, cell states, and ex vivo perturbations. We then discuss current methodologies, modeling approaches, and technical challenges as well as future opportunities and applications.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Humanos , Estudio de Asociación del Genoma Completo/métodos , Mapeo Cromosómico , Proyectos de Investigación
3.
Mol Biol Evol ; 39(2)2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35038748

RESUMEN

The geographical location and shape of Apulia, a narrow land stretching out in the sea at the South of Italy, made this region a Mediterranean crossroads connecting Western Europe and the Balkans. Such movements culminated at the beginning of the Iron Age with the Iapygian civilization which consisted of three cultures: Peucetians, Messapians, and Daunians. Among them, the Daunians left a peculiar cultural heritage, with one-of-a-kind stelae and pottery, but, despite the extensive archaeological literature, their origin has been lost to time. In order to shed light on this and to provide a genetic picture of Iron Age Southern Italy, we collected and sequenced human remains from three archaeological sites geographically located in Northern Apulia (the area historically inhabited by Daunians) and radiocarbon dated between 1157 and 275 calBCE. We find that Iron Age Apulian samples are still distant from the genetic variability of modern-day Apulians, they show a degree of genetic heterogeneity comparable with the cosmopolitan Republican and Imperial Roman civilization, even though a few kilometers and centuries separate them, and they are well inserted into the Iron Age Pan-Mediterranean genetic landscape. Our study provides for the first time a window on the genetic make-up of pre-Roman Apulia, whose increasing connectivity within the Mediterranean landscape, would have contributed to laying the foundation for modern genetic variability. In this light, the genetic profile of Daunians may be compatible with an at least partial autochthonous origin, with plausible contributions from the Balkan peninsula.


Asunto(s)
ADN Mitocondrial , ADN Mitocondrial/genética , Europa (Continente) , Italia
4.
Genomics ; 114(4): 110405, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35709925

RESUMEN

Southern Italy was characterised by a complex prehistory that started with different Palaeolithic cultures, later followed by the Neolithization and the demic dispersal from the Pontic-Caspian Steppe during the Bronze Age. Archaeological and historical evidences point to a link between Southern Italians and the Balkans still present in modern times. To shed light on these dynamics, we analysed around 700 South Mediterranean genomes combined with informative ancient DNAs. Our findings revealed high affinities of South-Eastern Italians with modern Eastern Peloponnesians, and a closer affinity of ancient Greek genomes with those from specific regions of South Italy than modern Greek genomes. The higher similarity could be associated with a Bronze Age component ultimately originating from the Caucasus with high Iranian and Anatolian Neolithic ancestries. Furthermore, extremely differentiated allele frequencies among Northern and Southern Italy revealed putatively adapted SNPs in genes involved in alcohol metabolism, nevi features and immunological traits.


Asunto(s)
ADN Antiguo , Genoma Humano , Arqueología , Humanos , Irán , Italia
5.
BMC Biol ; 17(1): 3, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30674303

RESUMEN

BACKGROUND: Recent genome studies of modern and ancient samples have proposed that Native Americans derive from a subset of the Eurasian gene pool carried to America by an ancestral Beringian population, from which two well-differentiated components originated and subsequently mixed in different proportion during their spread in the Americas. To assess the timing, places of origin and extent of admixture between these components, we performed an analysis of the Y-chromosome haplogroup Q, which is the only Pan-American haplogroup and accounts for virtually all Native American Y chromosomes in Mesoamerica and South America. RESULTS: Our analyses of 1.5 Mb of 152 Y chromosomes, 34 re-sequenced in this work, support a "coastal and inland routes scenario" for the first entrance of modern humans in North America. We show a major phase of male population growth in the Americas after 15 thousand years ago (kya), followed by a period of constant population size from 8 to 3 kya, after which a secondary sign of growth was registered. The estimated dates of the first expansion in Mesoamerica and the Isthmo-Colombian Area, mainly revealed by haplogroup Q-Z780, suggest an entrance in South America prior to 15 kya. During the global constant population size phase, local South American hints of growth were registered by different Q-M848 sub-clades. These expansion events, which started during the Holocene with the improvement of climatic conditions, can be ascribed to multiple cultural changes rather than a steady population growth and a single cohesive culture diffusion as it occurred in Europe. CONCLUSIONS: We established and dated a detailed haplogroup Q phylogeny that provides new insights into the geographic distribution of its Eurasian and American branches in modern and ancient samples.


Asunto(s)
Cromosomas Humanos Y , Variación Genética , Haplotipos , Indígenas Norteamericanos/genética , Polimorfismo de Nucleótido Simple , Población Blanca/genética , Américas , Europa (Continente) , Genética de Población , Humanos , Filogenia
6.
Int J Mol Sci ; 20(22)2019 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-31744094

RESUMEN

Many anthropological, linguistic, genetic and genomic analyses have been carried out to evaluate the potential impact that evolutionary forces had in shaping the present-day Sardinian gene pool, the main outlier in the genetic landscape of Europe. However, due to the homogenizing effect of internal movements, which have intensified over the past fifty years, only partial information has been obtained about the main demographic events. To overcome this limitation, we analyzed the male-specific region of the Y chromosome in three population samples obtained by reallocating a large number of Sardinian subjects to the place of origin of their monophyletic surnames, which are paternally transmitted through generations in most of the populations, much like the Y chromosome. Three Y-chromosome founding lineages, G2-L91, I2-M26 and R1b-V88, were identified as strongly contributing to the definition of the outlying position of Sardinians in the European genetic context and marking a significant differentiation within the island. The present distribution of these lineages does not always mirror that detected in ancient DNAs. Our results show that the analysis of the Y-chromosome gene pool coupled with a sampling method based on the origin of the family name, is an efficient approach to unravelling past heterogeneity, often hidden by recent movements, in the gene pool of modern populations. Furthermore, the reconstruction and comparison of past genetic isolates represent a starting point to better assess the genetic information deriving from the increasing number of available ancient DNA samples.


Asunto(s)
Cromosomas Humanos Y/genética , Genética de Población , Cromosomas Humanos Y/clasificación , ADN Antiguo/análisis , Frecuencia de los Genes , Ligamiento Genético , Haplotipos , Humanos , Islas , Italia , Masculino , Filogenia , Análisis de Componente Principal , Población Blanca/genética
7.
Ann Hum Biol ; 45(1): 44-56, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29382284

RESUMEN

BACKGROUND: Due to its central and strategic position in Europe and in the Mediterranean Basin, the Italian Peninsula played a pivotal role in the first peopling of the European continent and has been a crossroad of peoples and cultures since then. AIM: This study aims to gain more information on the genetic structure of modern Italian populations and to shed light on the migration/expansion events that led to their formation. SUBJECTS AND METHODS: High resolution Y-chromosome variation analysis in 817 unrelated males from 10 informative areas of Italy was performed. Haplogroup frequencies and microsatellite haplotypes were used, together with available data from the literature, to evaluate Mediterranean and European inputs and date their arrivals. RESULTS: Fifty-three distinct Y-chromosome lineages were identified. Their distribution is in general agreement with geography, southern populations being more differentiated than northern ones. CONCLUSIONS: A complex genetic structure reflecting the multifaceted peopling pattern of the Peninsula emerged: southern populations show high similarity with those from the Middle East and Southern Balkans, while those from Northern Italy are close to populations of North-Western Europe and the Northern Balkans. Interestingly, the population of Volterra, an ancient town of Etruscan origin in Tuscany, displays a unique Y-chromosomal genetic structure.


Asunto(s)
Cromosomas Humanos Y/genética , ADN Mitocondrial/genética , Variación Genética , Haplotipos , Repeticiones de Microsatélite , Humanos , Italia , Masculino
8.
BMC Evol Biol ; 17(Suppl 1): 18, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28251872

RESUMEN

BACKGROUND: The Y-chromosome haplogroup Q has three major branches: Q1, Q2, and Q3. Q1 is found in both Asia and the Americas where it accounts for about 90% of indigenous Native American Y-chromosomes; Q2 is found in North and Central Asia; but little is known about the third branch, Q3, also named Q1b-L275. Here, we combined the efforts of population geneticists and genetic genealogists to use the potential of full Y-chromosome sequencing for reconstructing haplogroup Q3 phylogeography and suggest possible linkages to events in population history. RESULTS: We analyzed 47 fully sequenced Y-chromosomes and reconstructed the haplogroup Q3 phylogenetic tree in detail. Haplogroup Q3-L275, derived from the oldest known split within Eurasian/American haplogroup Q, most likely occurred in West or Central Asia in the Upper Paleolithic period. During the Mesolithic and Neolithic epochs, Q3 remained a minor component of the West Asian Y-chromosome pool and gave rise to five branches (Q3a to Q3e), which spread across West, Central and parts of South Asia. Around 3-4 millennia ago (Bronze Age), the Q3a branch underwent a rapid expansion, splitting into seven branches, some of which entered Europe. One of these branches, Q3a1, was acquired by a population ancestral to Ashkenazi Jews and grew within this population during the 1st millennium AD, reaching up to 5% in present day Ashkenazi. CONCLUSIONS: This study dataset was generated by a massive Y-chromosome genotyping effort in the genetic genealogy community, and phylogeographic patterns were revealed by a collaboration of population geneticists and genetic genealogists. This positive experience of collaboration between academic and citizen science provides a model for further joint projects. Merging data and skills of academic and citizen science promises to combine, respectively, quality and quantity, generalization and specialization, and achieve a well-balanced and careful interpretation of the paternal-side history of human populations.


Asunto(s)
Cromosomas Humanos Y , Genética de Población , Asia , Colaboración de las Masas , Etnicidad/genética , Europa (Continente) , Ligamiento Genético , Haplotipos , Humanos , Masculino , Filogeografía
9.
bioRxiv ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38370750

RESUMEN

The adoption of agriculture, first documented ~12,000 years ago in the Fertile Crescent, triggered a rapid shift toward starch-rich diets in human populations. Amylase genes facilitate starch digestion and increased salivary amylase copy number has been observed in some modern human populations with high starch intake, though evidence of recent selection is lacking. Here, using 52 long-read diploid assemblies and short read data from ~5,600 contemporary and ancient humans, we resolve the diversity, evolutionary history, and selective impact of structural variation at the amylase locus. We find that amylase genes have higher copy numbers in populations with agricultural subsistence compared to fishing, hunting, and pastoral groups. We identify 28 distinct amylase structural architectures and demonstrate that nearly identical structures have arisen recurrently on different haplotype backgrounds throughout recent human history. AMY1 and AMY2A genes each exhibit multiple duplications/deletions with mutation rates >10,000-fold the SNP mutation rate, whereas AMY2B gene duplications share a single origin. Using a pangenome graph-based approach to infer structural haplotypes across thousands of humans, we identify extensively duplicated haplotypes present at higher frequencies in modern day populations with traditionally agricultural diets. Leveraging 533 ancient human genomes we find that duplication-containing haplotypes (i.e. haplotypes with more amylase gene copies than the ancestral haplotype) have increased in frequency more than seven-fold over the last 12,000 years providing evidence for recent selection in West Eurasians. Together, our study highlights the potential impacts of the agricultural revolution on human genomes and the importance of long-read sequencing in identifying signatures of selection at structurally complex loci.

10.
Sci Rep ; 13(1): 13839, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620368

RESUMEN

Y chromosome markers can shed light on male-specific population dynamics but for many species no such markers have been discovered and are available yet, despite the potential for recovering Y-linked loci from available genome sequences. Here, we investigated how effective available bioinformatic tools are in recovering informative Y chromosome microsatellites from whole genome sequence data. In order to do so, we initially explored a large dataset of whole genome sequences comprising individuals at various coverages belonging to different species of baboons (genus: Papio) using Y chromosome references belonging to the same genus and more distantly related species (Macaca mulatta). We then further tested this approach by recovering Y-STRs from available Theropithecus gelada genomes using Papio and Macaca Y chromosome as reference sequences. Identified loci were validated in silico by a) comparing within-species relationships of Y chromosome lineages and b) genotyping male individuals in available pedigrees. Each STR was selected not to extend in its variable region beyond 100 base pairs, so that loci can be developed for PCR-based genotyping of non-invasive DNA samples. In addition to assembling a first set of Papio and Theropithecus Y-specific microsatellite markers, we released TYpeSTeR, an easy-to-use script to identify and genotype Y chromosome STRs using population genomic data which can be modulated according to available male reference genomes and genomic data, making it widely applicable across taxa.


Asunto(s)
Metagenómica , Theropithecus , Humanos , Masculino , Animales , Papio , Macaca mulatta , Repeticiones de Microsatélite/genética
11.
Curr Biol ; 33(8): 1573-1581.e5, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36931272

RESUMEN

Despite its crucial location, the western side of Amazonia between the Andes and the source(s) of the Amazon River is still understudied from a genomic and archaeogenomic point of view, albeit possibly harboring essential information to clarify the complex genetic history of local Indigenous groups and their interactions with nearby regions,1,2,3,4,5,6,7,8 including central America and the Caribbean.9,10,11,12 Focusing on this key region, we analyzed the genome-wide profiles of 51 Ashaninka individuals from Amazonian Peru, observing an unexpected extent of genomic variation. We identified at least two Ashaninka subgroups with distinctive genomic makeups, which were differentially shaped by the degree and timing of external admixtures, especially with the Indigenous groups from the Andes and the Pacific coast. On a continental scale, Ashaninka ancestors probably derived from a south-north migration of Indigenous groups moving into the Amazonian rainforest from a southeastern area with contributions from the Southern Cone and the Atlantic coast. These ancestral populations diversified in the variegated geographic regions of interior South America, on the eastern side of the Andes, differentially interacting with surrounding coastal groups. In this complex scenario, we also revealed strict connections between the ancestors of present-day Ashaninka, who belong to the Arawakan language family,13 and those Indigenous groups that moved further north into the Caribbean, contributing to the early Ceramic (Saladoid) tradition in the islands.14,15.


Asunto(s)
Etnicidad , Genética de Población , Humanos , Perú , América del Sur , Etnicidad/genética , Genómica
12.
Genes (Basel) ; 13(4)2022 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-35456473

RESUMEN

SOG1 (Suppressor of the Gamma response 1) is the master-regulator of plant DNA damage response (DDR), a highly coordinated network of DNA damage sensors, transducers, mediators, and effectors, with highly coordinated activities. SOG1 transcription factor belongs to the NAC/NAM protein family, containing the well-conserved NAC domain and five serine-glutamine (SQ) motifs, preferential targets for phosphorylation by ATM and ATR. So far, the information gathered for the SOG1 function comes from studies on the model plant Arabidopsis thaliana. To expand the knowledge on plant-specific DDR, it is opportune to gather information on other SOG1 orthologues. The current study identified plants where multiple SOG1 homologues are present and evaluated their functions by leveraging the information contained in publicly available transcriptomics databases. This analysis revealed the presence of multiple SOG1 sequences in thirteen plant species, and four (Medicago truncatula, Glycine max, Kalankoe fedtschenkoi, Populus trichocarpa) were selected for gene expression data mining based on database availability. Additionally, M. truncatula seeds and seedlings exposed to treatments known to activate DDR pathways were used to evaluate the expression profiles of MtSOG1a and MtSOG1b. The experimental workflow confirmed the data retrieved from transcriptomics datasets, suggesting that the SOG1 homologues have redundant functions in different plant species.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Minería de Datos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Cell Death Discov ; 8(1): 106, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35260564

RESUMEN

Breast cancer (BC) constitutes a major health problem worldwide, making it the most common malignancy in women. Current treatment options for BC depend primarily on histological type, molecular markers, clinical aggressiveness and stage of disease. Immunotherapy, such as αPD-1, have shown combinatorial clinical activity with chemotherapy in triple negative breast cancer (TNBC) delineating some therapeutic combinations as more effective than others. However, a clear overview of the main immune cell populations involved in these treatments has never been provided.Here, an assessment of the immune landscape in the tumor microenvironment (TME) of two TNBC mouse models has been performed using single-cell RNA sequencing technology. Specifically, immune cells were evaluated in untreated conditions and after treatments with chemotherapy or immunotherapy used as single agents or in combination. A decrease of Treg was found in treatments with in vivo efficacy as well as γδ T cells, which have a pro-tumoral activity in mice. Focusing on Cd8 T cells, across all the conditions, a general increase of exhausted-like Cd8 T cells was confirmed in pre-clinical treatments with low efficacy and an opposite trend was found for the proliferative Cd8 T cells. Regarding macrophages, M2-like cells were enriched in treatments with low efficacy while M1-like macrophages followed an opposite trend. For both models, similar proportions of B cells were detected with an increase of proliferative B cells in treatments involving cisplatin in combination with αPD-1. The fine-scale characterization of the immune TME in this work can lead to new insights on the diagnosis and treatment of TNBC.

14.
Genes (Basel) ; 13(2)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35205264

RESUMEN

Uniparental genetic systems are unique sex indicators and complement the study of autosomal diversity by providing landmarks of human migrations that repeatedly shaped the structure of extant populations. Our knowledge of the variation of the male-specific region of the Y chromosome in Native Americans is still rather scarce and scattered, but by merging sequence information from modern and ancient individuals, we here provide a comprehensive and updated phylogeny of the distinctive Native American branches of haplogroups C and Q. Our analyses confirm C-MPB373, C-P39, Q-Z780, Q-M848, and Q-Y4276 as the main founding haplogroups and identify traces of unsuccessful (pre-Q-F1096) or extinct (C-L1373*, Q-YP4010*) Y-chromosome lineages, indicating that haplogroup diversity of the founder populations that first entered the Americas was greater than that observed in the Indigenous component of modern populations. In addition, through a diachronic and phylogeographic dissection of newly identified Q-M848 branches, we provide the first Y-chromosome insights into the early peopling of the South American hinterland (Q-BY104773 and Q-BY15730) and on overlying inland migrations (Q-BY139813).


Asunto(s)
Cromosomas Humanos Y , Migración Humana , Américas , Cromosomas Humanos Y/genética , Haplotipos , Humanos , Masculino , Filogenia
15.
Cell Rep ; 40(8): 111256, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-36001966

RESUMEN

Immunotherapy is improving the prognosis and survival of cancer patients, but despite encouraging outcomes in different cancers, the majority of tumors are resistant to it, and the immunotherapy combinations are often accompanied by severe side effects. Here, we show that a periodic fasting-mimicking diet (FMD) can act on the tumor microenvironment and increase the efficacy of immunotherapy (anti-PD-L1 and anti-OX40) against the poorly immunogenic triple-negative breast tumors (TNBCs) by expanding early exhausted effector T cells, switching the cancer metabolism from glycolytic to respiratory, and reducing collagen deposition. Furthermore, FMD reduces the occurrence of immune-related adverse events (irAEs) by preventing the hyperactivation of the immune response. These results indicate that FMD cycles have the potential to enhance the efficacy of anti-cancer immune responses, expand the portion of tumors sensitive to immunotherapy, and reduce its side effects.


Asunto(s)
Ayuno , Neoplasias de la Mama Triple Negativas , Antígeno B7-H1/metabolismo , Glucólisis , Humanos , Inmunoterapia/efectos adversos , Inmunoterapia/métodos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Microambiente Tumoral
16.
BMC Ecol Evol ; 22(1): 44, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35410131

RESUMEN

BACKGROUND: Gorongosa National Park in Mozambique hosts a large population of baboons, numbering over 200 troops. Gorongosa baboons have been tentatively identified as part of Papio ursinus on the basis of previous limited morphological analysis and a handful of mitochondrial DNA sequences. However, a recent morphological and morphometric analysis of Gorongosa baboons pinpointed the occurrence of several traits intermediate between P. ursinus and P. cynocephalus, leaving open the possibility of past and/or ongoing gene flow in the baboon population of Gorongosa National Park. In order to investigate the evolutionary history of baboons in Gorongosa, we generated high and low coverage whole genome sequence data of Gorongosa baboons and compared it to available Papio genomes. RESULTS: We confirmed that P. ursinus is the species closest to Gorongosa baboons. However, the Gorongosa baboon genomes share more derived alleles with P. cynocephalus than P. ursinus does, but no recent gene flow between P. ursinus and P. cynocephalus was detected when available Papio genomes were analyzed. Our results, based on the analysis of autosomal, mitochondrial and Y chromosome data, suggest complex, possibly male-biased, gene flow between Gorongosa baboons and P. cynocephalus, hinting to direct or indirect contributions from baboons belonging to the "northern" Papio clade, and signal the presence of population structure within P. ursinus. CONCLUSIONS: The analysis of genome data generated from baboon samples collected in central Mozambique highlighted a complex set of evolutionary relationships with other baboons. Our results provided new insights in the population dynamics that have shaped baboon diversity.


Asunto(s)
Evolución Biológica , Papio ursinus , Alelos , Animales , Masculino , Mozambique , Papio/genética , Papio ursinus/anatomía & histología
17.
Cancers (Basel) ; 13(20)2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34680190

RESUMEN

The role of innate lymphoid cells (ILCs), including natural killer (NK) cells, is pivotal in inflammatory modulation and cancer. Natural killer cell activity and count have been demonstrated to be regulated by the expression of activating and inhibitory receptors together with and as a consequence of different stimuli. The great majority of NK cell populations have an anti-tumor activity due to their cytotoxicity, and for this reason have been used for cellular therapies in cancer patients. On the other hand, the recently classified helper ILCs are fundamentally involved in inflammation and they can be either helpful or harmful in cancer development and progression. Tissue niche seems to play an important role in modulating ILC function and conversion, as observed at the transcriptional level. In the past, these cell populations have been classified by the presence of specific cellular receptor markers; more recently, due to the advent of single-cell RNA sequencing (scRNA-seq), it has been possible to also explore them at the transcriptomic level. In this article we review studies on ILC (and NK cell) classification, function and their involvement in cancer. We also summarize the potential application of NK cells in cancer therapy and give an overview of the most recent studies involving ILCs and NKs at scRNA-seq, focusing on cancer. Finally, we provide a resource for those who wish to start single-cell transcriptomic analysis on the context of these innate lymphoid cell populations.

18.
Curr Med Chem ; 28(11): 2114-2136, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33109033

RESUMEN

The costs of developing, validating and buying new drugs are dramatically increasing. On the other hand, sobering economies have difficulties in sustaining their healthcare systems, particularly in countries with an elderly population requiring increasing welfare. This conundrum requires immediate action, and a possible option is to study the large, already present arsenal of drugs approved and to use them for innovative therapies. This possibility is particularly interesting in oncology, where the complexity of the cancer genome dictates in most patients a multistep therapeutic approach. In this review, we discuss a) Computational approaches; b) preclinical models; c) currently ongoing or already published clinical trials in the drug repurposing field in oncology; and d) drug repurposing to overcome resistance to previous therapies.


Asunto(s)
Reposicionamiento de Medicamentos , Neoplasias , Anciano , Humanos , Neoplasias/tratamiento farmacológico
19.
Genome Biol Evol ; 13(9)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34480555

RESUMEN

The Arabian Peninsula is strategic for investigations centered on the early structuring of modern humans in the wake of the out-of-Africa migration. Despite its poor climatic conditions for the recovery of ancient human DNA evidence, the availability of both genomic data from neighboring ancient specimens and informative statistical tools allow modeling the ancestry of local modern populations. We applied this approach to a data set of 741,000 variants screened in 291 Arabians and 78 Iranians, and obtained insightful evidence. The west-east axis was a strong forcer of population structure in the Peninsula, and, more importantly, there were clear continuums throughout time linking western Arabia with the Levant, and eastern Arabia with Iran and the Caucasus. Eastern Arabians also displayed the highest levels of the basal Eurasian lineage of all tested modern-day populations, a signal that was maintained even after correcting for a possible bias due to a recent sub-Saharan African input in their genomes. Not surprisingly, eastern Arabians were also the ones with highest similarity with Iberomaurusians, who were, so far, the best proxy for the basal Eurasians amongst the known ancient specimens. The basal Eurasian lineage is the signature of ancient non-Africans who diverged from the common European-eastern Asian pool before 50,000 years ago, prior to the later interbred with Neanderthals. Our results appear to indicate that the exposed basin of the Arabo-Persian Gulf was the possible home of basal Eurasians, a scenario to be further investigated by searching ancient Arabian human specimens.


Asunto(s)
Hombre de Neandertal , Animales , ADN Antiguo , Genética de Población , Genoma Humano , Migración Humana , Humanos , Océano Índico , Irán , Hombre de Neandertal/genética
20.
Cancer Res ; 81(3): 685-697, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33268528

RESUMEN

Checkpoint inhibitors (CI) instigate anticancer immunity in many neoplastic diseases, albeit only in a fraction of patients. The clinical success of cyclophosphamide (C)-based haploidentical stem-cell transplants indicates that this drug may re-orchestrate the immune system. Using models of triple-negative breast cancer (TNBC) with different intratumoral immune contexture, we demonstrate that a combinatorial therapy of intermittent C, CI, and vinorelbine activates antigen-presenting cells (APC), and abrogates local and metastatic tumor growth by a T-cell-related effect. Single-cell transcriptome analysis of >50,000 intratumoral immune cells after therapy treatment showed a gene signature suggestive of a change resulting from exposure to a mitogen, ligand, or antigen for which it is specific, as well as APC-to-T-cell adhesion. This transcriptional program also increased intratumoral Tcf1+ stem-like CD8+ T cells and altered the balance between terminally and progenitor-exhausted T cells favoring the latter. Overall, our data support the clinical investigation of this therapy in TNBC. SIGNIFICANCE: A combinatorial therapy in mouse models of breast cancer increases checkpoint inhibition by activating antigen-presenting cells, enhancing intratumoral Tcf1+ stem-like CD8+ T cells, and increasing progenitor exhausted CD8+ T cells.


Asunto(s)
Antineoplásicos/farmacología , Linfocitos T CD8-positivos/efectos de los fármacos , Ciclofosfamida/farmacología , Inhibidores de Puntos de Control Inmunológico/farmacología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Vinorelbina/farmacología , Animales , Células Presentadoras de Antígenos/efectos de los fármacos , Células Presentadoras de Antígenos/inmunología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Linfocitos T CD8-positivos/inmunología , Adhesión Celular , Femenino , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Inmunidad Celular , Ratones , Ratones Endogámicos BALB C , Transcriptoma , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA