Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Plant Cell Environ ; 47(6): 2127-2145, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38419355

RESUMEN

Rhizosphere microbial community assembly results from microbe-microbe-plant interactions mediated by small molecules of plant and microbial origin. Studies with Arabidopsis thaliana have indicated a critical role of glucosinolates in shaping the root and/or rhizosphere microbial community, likely through breakdown products produced by plant or microbial myrosinases inside or outside of the root. Plant nitrile-specifier proteins (NSPs) promote the formation of nitriles at the expense of isothiocyanates upon glucosinolate hydrolysis with unknown consequences for microbial colonisation of roots and rhizosphere. Here, we generated the A. thaliana triple mutant nsp134 devoid of nitrile formation in root homogenates. Using this line and mutants lacking aliphatic or indole glucosinolate biosynthesis pathways or both, we found bacterial/archaeal alpha-diversity of the rhizosphere to be affected only by the ability to produce aliphatic glucosinolates. In contrast, bacterial/archaeal community composition depended on functional root NSPs as well as on pathways of aliphatic and indole glucosinolate biosynthesis. Effects of NSP deficiency were strikingly distinct from those of impaired glucosinolate biosynthesis. Our results demonstrate that rhizosphere microbial community assembly depends on functional pathways of both glucosinolate biosynthesis and breakdown in support of the hypothesis that glucosinolate hydrolysis by myrosinases and NSPs happens before secretion of products to the rhizosphere.


Asunto(s)
Arabidopsis , Archaea , Bacterias , Glucosinolatos , Raíces de Plantas , Rizosfera , Glucosinolatos/metabolismo , Glucosinolatos/biosíntesis , Arabidopsis/metabolismo , Arabidopsis/microbiología , Arabidopsis/genética , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Bacterias/metabolismo , Bacterias/genética , Archaea/metabolismo , Archaea/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Mutación , Nitrilos/metabolismo
2.
Genes (Basel) ; 11(10)2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-33081197

RESUMEN

Hypericum perforatum L. commonly known as Saint John's Wort (SJW), is an important medicinal plant that has been used for more than 2000 years. Although H. perforatum produces several bioactive compounds, its importance is mainly linked to two molecules highly relevant for the pharmaceutical industry: the prenylated phloroglucinol hyperforin and the naphtodianthrone hypericin. The first functions as a natural antidepressant while the second is regarded as a powerful anticancer drug and as a useful compound for the treatment of Alzheimer's disease. While the antidepressant activity of SJW extracts motivate a multi-billion dollar industry around the world, the scientific interest centers around the biosynthetic pathways of hyperforin and hypericin and their medical applications. Here, we focus on what is known about these processes and evaluate the possibilities of combining state of the art omics, genome editing, and synthetic biology to unlock applications that would be of great value for the pharmaceutical and medical industries.


Asunto(s)
Hypericum/química , Hypericum/genética , Fitoquímicos/biosíntesis , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Proteínas de Plantas/genética , Antracenos , Antidepresivos/farmacología , Antineoplásicos/farmacología , Europa (Continente) , Humanos , Hypericum/crecimiento & desarrollo , Hypericum/metabolismo , Perileno/análogos & derivados , Perileno/farmacología , Floroglucinol/análogos & derivados , Floroglucinol/farmacología , Terpenos/farmacología
3.
Front Plant Sci ; 7: 1821, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27990154

RESUMEN

One of the best-studied plant defense systems, the glucosinolate-myrosinase system of the Brassicales, is composed of thioglucosides known as glucosinolates and their hydrolytic enzymes, the myrosinases. Tissue disruption brings these components together, and bioactive products are formed as a consequence of myrosinase-catalyzed glucosinolate hydrolysis. Among these products, isothiocyanates have attracted most interest as chemical plant defenses against herbivores and pathogens and health-promoting compounds in the human diet. Previous research has identified specifier proteins whose presence results in the formation of alternative product types, e.g., nitriles, at the expense of isothiocyanates. The biological roles of specifier proteins and alternative breakdown products are poorly understood. Here, we assessed glucosinolate breakdown product profiles obtained upon maceration of roots, seedlings and seeds of Arabidopsis thaliana Columbia-0. We identified simple nitriles as the predominant breakdown products of the major endogenous aliphatic glucosinolates in root, seed, and seedling homogenates. In agreement with this finding, genes encoding nitrile-specifier proteins (NSPs) are expressed in roots, seeds, and seedlings. Analysis of glucosinolate breakdown in mutants with T-DNA insertions in any of the five NSP genes demonstrated, that simple nitrile formation upon tissue disruption depended almost entirely on NSP2 in seeds and mainly on NSP1 in seedlings. In roots, about 70-80% of the nitrile-forming activity was due to NSP1 and NSP3. Thus, glucosinolate breakdown product profiles are organ-specifically regulated in A. thaliana Col-0, and high proportions of simple nitriles are formed in some parts of the plant. This should be considered in future studies on biological roles of the glucosinolate-myrosinase system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA